Filtered by vendor Redhat
Subscriptions
Filtered by product Enterprise Linux
Subscriptions
Total
15481 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-43880 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_erp: Fix object nesting warning ACLs in Spectrum-2 and newer ASICs can reside in the algorithmic TCAM (A-TCAM) or in the ordinary circuit TCAM (C-TCAM). The former can contain more ACLs (i.e., tc filters), but the number of masks in each region (i.e., tc chain) is limited. In order to mitigate the effects of the above limitation, the device allows filters to share a single mask if their masks only differ in up to 8 consecutive bits. For example, dst_ip/25 can be represented using dst_ip/24 with a delta of 1 bit. The C-TCAM does not have a limit on the number of masks being used (and therefore does not support mask aggregation), but can contain a limited number of filters. The driver uses the "objagg" library to perform the mask aggregation by passing it objects that consist of the filter's mask and whether the filter is to be inserted into the A-TCAM or the C-TCAM since filters in different TCAMs cannot share a mask. The set of created objects is dependent on the insertion order of the filters and is not necessarily optimal. Therefore, the driver will periodically ask the library to compute a more optimal set ("hints") by looking at all the existing objects. When the library asks the driver whether two objects can be aggregated the driver only compares the provided masks and ignores the A-TCAM / C-TCAM indication. This is the right thing to do since the goal is to move as many filters as possible to the A-TCAM. The driver also forbids two identical masks from being aggregated since this can only happen if one was intentionally put in the C-TCAM to avoid a conflict in the A-TCAM. The above can result in the following set of hints: H1: {mask X, A-TCAM} -> H2: {mask Y, A-TCAM} // X is Y + delta H3: {mask Y, C-TCAM} -> H4: {mask Z, A-TCAM} // Y is Z + delta After getting the hints from the library the driver will start migrating filters from one region to another while consulting the computed hints and instructing the device to perform a lookup in both regions during the transition. Assuming a filter with mask X is being migrated into the A-TCAM in the new region, the hints lookup will return H1. Since H2 is the parent of H1, the library will try to find the object associated with it and create it if necessary in which case another hints lookup (recursive) will be performed. This hints lookup for {mask Y, A-TCAM} will either return H2 or H3 since the driver passes the library an object comparison function that ignores the A-TCAM / C-TCAM indication. This can eventually lead to nested objects which are not supported by the library [1]. Fix by removing the object comparison function from both the driver and the library as the driver was the only user. That way the lookup will only return exact matches. I do not have a reliable reproducer that can reproduce the issue in a timely manner, but before the fix the issue would reproduce in several minutes and with the fix it does not reproduce in over an hour. Note that the current usefulness of the hints is limited because they include the C-TCAM indication and represent aggregation that cannot actually happen. This will be addressed in net-next. [1] WARNING: CPU: 0 PID: 153 at lib/objagg.c:170 objagg_obj_parent_assign+0xb5/0xd0 Modules linked in: CPU: 0 PID: 153 Comm: kworker/0:18 Not tainted 6.9.0-rc6-custom-g70fbc2c1c38b #42 Hardware name: Mellanox Technologies Ltd. MSN3700C/VMOD0008, BIOS 5.11 10/10/2018 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:objagg_obj_parent_assign+0xb5/0xd0 [...] Call Trace: <TASK> __objagg_obj_get+0x2bb/0x580 objagg_obj_get+0xe/0x80 mlxsw_sp_acl_erp_mask_get+0xb5/0xf0 mlxsw_sp_acl_atcam_entry_add+0xe8/0x3c0 mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0 mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270 mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510 process_one_work+0x151/0x370 | ||||
| CVE-2024-43879 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: handle 2x996 RU allocation in cfg80211_calculate_bitrate_he() Currently NL80211_RATE_INFO_HE_RU_ALLOC_2x996 is not handled in cfg80211_calculate_bitrate_he(), leading to below warning: kernel: invalid HE MCS: bw:6, ru:6 kernel: WARNING: CPU: 0 PID: 2312 at net/wireless/util.c:1501 cfg80211_calculate_bitrate_he+0x22b/0x270 [cfg80211] Fix it by handling 2x996 RU allocation in the same way as 160 MHz bandwidth. | ||||
| CVE-2024-43873 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: vhost/vsock: always initialize seqpacket_allow There are two issues around seqpacket_allow: 1. seqpacket_allow is not initialized when socket is created. Thus if features are never set, it will be read uninitialized. 2. if VIRTIO_VSOCK_F_SEQPACKET is set and then cleared, then seqpacket_allow will not be cleared appropriately (existing apps I know about don't usually do this but it's legal and there's no way to be sure no one relies on this). To fix: - initialize seqpacket_allow after allocation - set it unconditionally in set_features | ||||
| CVE-2024-43871 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: devres: Fix memory leakage caused by driver API devm_free_percpu() It will cause memory leakage when use driver API devm_free_percpu() to free memory allocated by devm_alloc_percpu(), fixed by using devres_release() instead of devres_destroy() within devm_free_percpu(). | ||||
| CVE-2024-43865 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 6.1 Medium |
| In the Linux kernel, the following vulnerability has been resolved: s390/fpu: Re-add exception handling in load_fpu_state() With the recent rewrite of the fpu code exception handling for the lfpc instruction within load_fpu_state() was erroneously removed. Add it again to prevent that loading invalid floating point register values cause an unhandled specification exception. | ||||
| CVE-2024-43856 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dma: fix call order in dmam_free_coherent dmam_free_coherent() frees a DMA allocation, which makes the freed vaddr available for reuse, then calls devres_destroy() to remove and free the data structure used to track the DMA allocation. Between the two calls, it is possible for a concurrent task to make an allocation with the same vaddr and add it to the devres list. If this happens, there will be two entries in the devres list with the same vaddr and devres_destroy() can free the wrong entry, triggering the WARN_ON() in dmam_match. Fix by destroying the devres entry before freeing the DMA allocation. kokonut //net/encryption http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03 | ||||
| CVE-2024-43854 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: block: initialize integrity buffer to zero before writing it to media Metadata added by bio_integrity_prep is using plain kmalloc, which leads to random kernel memory being written media. For PI metadata this is limited to the app tag that isn't used by kernel generated metadata, but for non-PI metadata the entire buffer leaks kernel memory. Fix this by adding the __GFP_ZERO flag to allocations for writes. | ||||
| CVE-2024-43853 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cgroup/cpuset: Prevent UAF in proc_cpuset_show() An UAF can happen when /proc/cpuset is read as reported in [1]. This can be reproduced by the following methods: 1.add an mdelay(1000) before acquiring the cgroup_lock In the cgroup_path_ns function. 2.$cat /proc/<pid>/cpuset repeatly. 3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/ $umount /sys/fs/cgroup/cpuset/ repeatly. The race that cause this bug can be shown as below: (umount) | (cat /proc/<pid>/cpuset) css_release | proc_cpuset_show css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id); css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...); cgroup_destroy_root | mutex_lock(&cgroup_mutex); rebind_subsystems | cgroup_free_root | | // cgrp was freed, UAF | cgroup_path_ns_locked(cgrp,..); When the cpuset is initialized, the root node top_cpuset.css.cgrp will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated &cgroup_root.cgrp. When the umount operation is executed, top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp. The problem is that when rebinding to cgrp_dfl_root, there are cases where the cgroup_root allocated by setting up the root for cgroup v1 is cached. This could lead to a Use-After-Free (UAF) if it is subsequently freed. The descendant cgroups of cgroup v1 can only be freed after the css is released. However, the css of the root will never be released, yet the cgroup_root should be freed when it is unmounted. This means that obtaining a reference to the css of the root does not guarantee that css.cgrp->root will not be freed. Fix this problem by using rcu_read_lock in proc_cpuset_show(). As cgroup_root is kfree_rcu after commit d23b5c577715 ("cgroup: Make operations on the cgroup root_list RCU safe"), css->cgroup won't be freed during the critical section. To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to replace task_get_css with task_css. [1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd | ||||
| CVE-2024-43846 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: lib: objagg: Fix general protection fault The library supports aggregation of objects into other objects only if the parent object does not have a parent itself. That is, nesting is not supported. Aggregation happens in two cases: Without and with hints, where hints are a pre-computed recommendation on how to aggregate the provided objects. Nesting is not possible in the first case due to a check that prevents it, but in the second case there is no check because the assumption is that nesting cannot happen when creating objects based on hints. The violation of this assumption leads to various warnings and eventually to a general protection fault [1]. Before fixing the root cause, error out when nesting happens and warn. [1] general protection fault, probably for non-canonical address 0xdead000000000d90: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 1083 Comm: kworker/1:9 Tainted: G W 6.9.0-rc6-custom-gd9b4f1cca7fb #7 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:mlxsw_sp_acl_erp_bf_insert+0x25/0x80 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_entry_add+0x256/0x3c0 mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0 mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270 mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> | ||||
| CVE-2024-43842 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: Fix array index mistake in rtw89_sta_info_get_iter() In rtw89_sta_info_get_iter() 'status->he_gi' is compared to array size. But then 'rate->he_gi' is used as array index instead of 'status->he_gi'. This can lead to go beyond array boundaries in case of 'rate->he_gi' is not equal to 'status->he_gi' and is bigger than array size. Looks like "copy-paste" mistake. Fix this mistake by replacing 'rate->he_gi' with 'status->he_gi'. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
| CVE-2024-43830 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 6.6 Medium |
| In the Linux kernel, the following vulnerability has been resolved: leds: trigger: Unregister sysfs attributes before calling deactivate() Triggers which have trigger specific sysfs attributes typically store related data in trigger-data allocated by the activate() callback and freed by the deactivate() callback. Calling device_remove_groups() after calling deactivate() leaves a window where the sysfs attributes show/store functions could be called after deactivation and then operate on the just freed trigger-data. Move the device_remove_groups() call to before deactivate() to close this race window. This also makes the deactivation path properly do things in reverse order of the activation path which calls the activate() callback before calling device_add_groups(). | ||||
| CVE-2024-43828 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix infinite loop when replaying fast_commit When doing fast_commit replay an infinite loop may occur due to an uninitialized extent_status struct. ext4_ext_determine_insert_hole() does not detect the replay and calls ext4_es_find_extent_range(), which will return immediately without initializing the 'es' variable. Because 'es' contains garbage, an integer overflow may happen causing an infinite loop in this function, easily reproducible using fstest generic/039. This commit fixes this issue by unconditionally initializing the structure in function ext4_es_find_extent_range(). Thanks to Zhang Yi, for figuring out the real problem! | ||||
| CVE-2024-43826 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 4.4 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nfs: pass explicit offset/count to trace events nfs_folio_length is unsafe to use without having the folio locked and a check for a NULL ->f_mapping that protects against truncations and can lead to kernel crashes. E.g. when running xfstests generic/065 with all nfs trace points enabled. Follow the model of the XFS trace points and pass in an explŃ–cit offset and length. This has the additional benefit that these values can be more accurate as some of the users touch partial folio ranges. | ||||
| CVE-2024-43823 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: PCI: keystone: Fix NULL pointer dereference in case of DT error in ks_pcie_setup_rc_app_regs() If IORESOURCE_MEM is not provided in Device Tree due to any error, resource_list_first_type() will return NULL and pci_parse_request_of_pci_ranges() will just emit a warning. This will cause a NULL pointer dereference. Fix this bug by adding NULL return check. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
| CVE-2024-43821 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix a possible null pointer dereference In function lpfc_xcvr_data_show, the memory allocation with kmalloc might fail, thereby making rdp_context a null pointer. In the following context and functions that use this pointer, there are dereferencing operations, leading to null pointer dereference. To fix this issue, a null pointer check should be added. If it is null, use scnprintf to notify the user and return len. | ||||
| CVE-2024-42322 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipvs: properly dereference pe in ip_vs_add_service Use pe directly to resolve sparse warning: net/netfilter/ipvs/ip_vs_ctl.c:1471:27: warning: dereference of noderef expression | ||||
| CVE-2024-42321 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: flow_dissector: use DEBUG_NET_WARN_ON_ONCE The following splat is easy to reproduce upstream as well as in -stable kernels. Florian Westphal provided the following commit: d1dab4f71d37 ("net: add and use __skb_get_hash_symmetric_net") but this complementary fix has been also suggested by Willem de Bruijn and it can be easily backported to -stable kernel which consists in using DEBUG_NET_WARN_ON_ONCE instead to silence the following splat given __skb_get_hash() is used by the nftables tracing infrastructure to to identify packets in traces. [69133.561393] ------------[ cut here ]------------ [69133.561404] WARNING: CPU: 0 PID: 43576 at net/core/flow_dissector.c:1104 __skb_flow_dissect+0x134f/ [...] [69133.561944] CPU: 0 PID: 43576 Comm: socat Not tainted 6.10.0-rc7+ #379 [69133.561959] RIP: 0010:__skb_flow_dissect+0x134f/0x2ad0 [69133.561970] Code: 83 f9 04 0f 84 b3 00 00 00 45 85 c9 0f 84 aa 00 00 00 41 83 f9 02 0f 84 81 fc ff ff 44 0f b7 b4 24 80 00 00 00 e9 8b f9 ff ff <0f> 0b e9 20 f3 ff ff 41 f6 c6 20 0f 84 e4 ef ff ff 48 8d 7b 12 e8 [69133.561979] RSP: 0018:ffffc90000006fc0 EFLAGS: 00010246 [69133.561988] RAX: 0000000000000000 RBX: ffffffff82f33e20 RCX: ffffffff81ab7e19 [69133.561994] RDX: dffffc0000000000 RSI: ffffc90000007388 RDI: ffff888103a1b418 [69133.562001] RBP: ffffc90000007310 R08: 0000000000000000 R09: 0000000000000000 [69133.562007] R10: ffffc90000007388 R11: ffffffff810cface R12: ffff888103a1b400 [69133.562013] R13: 0000000000000000 R14: ffffffff82f33e2a R15: ffffffff82f33e28 [69133.562020] FS: 00007f40f7131740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000 [69133.562027] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [69133.562033] CR2: 00007f40f7346ee0 CR3: 000000015d200001 CR4: 00000000001706f0 [69133.562040] Call Trace: [69133.562044] <IRQ> [69133.562049] ? __warn+0x9f/0x1a0 [ 1211.841384] ? __skb_flow_dissect+0x107e/0x2860 [...] [ 1211.841496] ? bpf_flow_dissect+0x160/0x160 [ 1211.841753] __skb_get_hash+0x97/0x280 [ 1211.841765] ? __skb_get_hash_symmetric+0x230/0x230 [ 1211.841776] ? mod_find+0xbf/0xe0 [ 1211.841786] ? get_stack_info_noinstr+0x12/0xe0 [ 1211.841798] ? bpf_ksym_find+0x56/0xe0 [ 1211.841807] ? __rcu_read_unlock+0x2a/0x70 [ 1211.841819] nft_trace_init+0x1b9/0x1c0 [nf_tables] [ 1211.841895] ? nft_trace_notify+0x830/0x830 [nf_tables] [ 1211.841964] ? get_stack_info+0x2b/0x80 [ 1211.841975] ? nft_do_chain_arp+0x80/0x80 [nf_tables] [ 1211.842044] nft_do_chain+0x79c/0x850 [nf_tables] | ||||
| CVE-2024-42316 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/mglru: fix div-by-zero in vmpressure_calc_level() evict_folios() uses a second pass to reclaim folios that have gone through page writeback and become clean before it finishes the first pass, since folio_rotate_reclaimable() cannot handle those folios due to the isolation. The second pass tries to avoid potential double counting by deducting scan_control->nr_scanned. However, this can result in underflow of nr_scanned, under a condition where shrink_folio_list() does not increment nr_scanned, i.e., when folio_trylock() fails. The underflow can cause the divisor, i.e., scale=scanned+reclaimed in vmpressure_calc_level(), to become zero, resulting in the following crash: [exception RIP: vmpressure_work_fn+101] process_one_work at ffffffffa3313f2b Since scan_control->nr_scanned has no established semantics, the potential double counting has minimal risks. Therefore, fix the problem by not deducting scan_control->nr_scanned in evict_folios(). | ||||
| CVE-2024-42315 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: exfat: fix potential deadlock on __exfat_get_dentry_set When accessing a file with more entries than ES_MAX_ENTRY_NUM, the bh-array is allocated in __exfat_get_entry_set. The problem is that the bh-array is allocated with GFP_KERNEL. It does not make sense. In the following cases, a deadlock for sbi->s_lock between the two processes may occur. CPU0 CPU1 ---- ---- kswapd balance_pgdat lock(fs_reclaim) exfat_iterate lock(&sbi->s_lock) exfat_readdir exfat_get_uniname_from_ext_entry exfat_get_dentry_set __exfat_get_dentry_set kmalloc_array ... lock(fs_reclaim) ... evict exfat_evict_inode lock(&sbi->s_lock) To fix this, let's allocate bh-array with GFP_NOFS. | ||||
| CVE-2024-42305 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: ext4: check dot and dotdot of dx_root before making dir indexed Syzbot reports a issue as follows: ============================================ BUG: unable to handle page fault for address: ffffed11022e24fe PGD 23ffee067 P4D 23ffee067 PUD 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 PID: 5079 Comm: syz-executor306 Not tainted 6.10.0-rc5-g55027e689933 #0 Call Trace: <TASK> make_indexed_dir+0xdaf/0x13c0 fs/ext4/namei.c:2341 ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2451 ext4_rename fs/ext4/namei.c:3936 [inline] ext4_rename2+0x26e5/0x4370 fs/ext4/namei.c:4214 [...] ============================================ The immediate cause of this problem is that there is only one valid dentry for the block to be split during do_split, so split==0 results in out of bounds accesses to the map triggering the issue. do_split unsigned split dx_make_map count = 1 split = count/2 = 0; continued = hash2 == map[split - 1].hash; ---> map[4294967295] The maximum length of a filename is 255 and the minimum block size is 1024, so it is always guaranteed that the number of entries is greater than or equal to 2 when do_split() is called. But syzbot's crafted image has no dot and dotdot in dir, and the dentry distribution in dirblock is as follows: bus dentry1 hole dentry2 free |xx--|xx-------------|...............|xx-------------|...............| 0 12 (8+248)=256 268 256 524 (8+256)=264 788 236 1024 So when renaming dentry1 increases its name_len length by 1, neither hole nor free is sufficient to hold the new dentry, and make_indexed_dir() is called. In make_indexed_dir() it is assumed that the first two entries of the dirblock must be dot and dotdot, so bus and dentry1 are left in dx_root because they are treated as dot and dotdot, and only dentry2 is moved to the new leaf block. That's why count is equal to 1. Therefore add the ext4_check_dx_root() helper function to add more sanity checks to dot and dotdot before starting the conversion to avoid the above issue. | ||||