Filtered by vendor Redhat
Subscriptions
Total
22981 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-2068 | 7 Broadcom, Debian, Fedoraproject and 4 more | 49 Sannav, Debian Linux, Fedora and 46 more | 2025-09-15 | 9.8 Critical |
| In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.4 (Affected 3.0.0,3.0.1,3.0.2,3.0.3). Fixed in OpenSSL 1.1.1p (Affected 1.1.1-1.1.1o). Fixed in OpenSSL 1.0.2zf (Affected 1.0.2-1.0.2ze). | ||||
| CVE-2022-49519 | 1 Redhat | 1 Enterprise Linux | 2025-09-15 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ath10k: skip ath10k_halt during suspend for driver state RESTARTING Double free crash is observed when FW recovery(caused by wmi timeout/crash) is followed by immediate suspend event. The FW recovery is triggered by ath10k_core_restart() which calls driver clean up via ath10k_halt(). When the suspend event occurs between the FW recovery, the restart worker thread is put into frozen state until suspend completes. The suspend event triggers ath10k_stop() which again triggers ath10k_halt() The double invocation of ath10k_halt() causes ath10k_htt_rx_free() to be called twice(Note: ath10k_htt_rx_alloc was not called by restart worker thread because of its frozen state), causing the crash. To fix this, during the suspend flow, skip call to ath10k_halt() in ath10k_stop() when the current driver state is ATH10K_STATE_RESTARTING. Also, for driver state ATH10K_STATE_RESTARTING, call ath10k_wait_for_suspend() in ath10k_stop(). This is because call to ath10k_wait_for_suspend() is skipped later in [ath10k_halt() > ath10k_core_stop()] for the driver state ATH10K_STATE_RESTARTING. The frozen restart worker thread will be cancelled during resume when the device comes out of suspend. Below is the crash stack for reference: [ 428.469167] ------------[ cut here ]------------ [ 428.469180] kernel BUG at mm/slub.c:4150! [ 428.469193] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 428.469219] Workqueue: events_unbound async_run_entry_fn [ 428.469230] RIP: 0010:kfree+0x319/0x31b [ 428.469241] RSP: 0018:ffffa1fac015fc30 EFLAGS: 00010246 [ 428.469247] RAX: ffffedb10419d108 RBX: ffff8c05262b0000 [ 428.469252] RDX: ffff8c04a8c07000 RSI: 0000000000000000 [ 428.469256] RBP: ffffa1fac015fc78 R08: 0000000000000000 [ 428.469276] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 428.469285] Call Trace: [ 428.469295] ? dma_free_attrs+0x5f/0x7d [ 428.469320] ath10k_core_stop+0x5b/0x6f [ 428.469336] ath10k_halt+0x126/0x177 [ 428.469352] ath10k_stop+0x41/0x7e [ 428.469387] drv_stop+0x88/0x10e [ 428.469410] __ieee80211_suspend+0x297/0x411 [ 428.469441] rdev_suspend+0x6e/0xd0 [ 428.469462] wiphy_suspend+0xb1/0x105 [ 428.469483] ? name_show+0x2d/0x2d [ 428.469490] dpm_run_callback+0x8c/0x126 [ 428.469511] ? name_show+0x2d/0x2d [ 428.469517] __device_suspend+0x2e7/0x41b [ 428.469523] async_suspend+0x1f/0x93 [ 428.469529] async_run_entry_fn+0x3d/0xd1 [ 428.469535] process_one_work+0x1b1/0x329 [ 428.469541] worker_thread+0x213/0x372 [ 428.469547] kthread+0x150/0x15f [ 428.469552] ? pr_cont_work+0x58/0x58 [ 428.469558] ? kthread_blkcg+0x31/0x31 Tested-on: QCA6174 hw3.2 PCI WLAN.RM.4.4.1-00288-QCARMSWPZ-1 | ||||
| CVE-2024-0639 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-15 | 5.5 Medium |
| A denial of service vulnerability due to a deadlock was found in sctp_auto_asconf_init in net/sctp/socket.c in the Linux kernel’s SCTP subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. | ||||
| CVE-2024-0641 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-15 | 5.5 Medium |
| A denial of service vulnerability was found in tipc_crypto_key_revoke in net/tipc/crypto.c in the Linux kernel’s TIPC subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system. | ||||
| CVE-2024-0607 | 3 Fedoraproject, Linux, Redhat | 3 Fedora, Linux Kernel, Enterprise Linux | 2025-09-15 | 6.6 Medium |
| A flaw was found in the Netfilter subsystem in the Linux kernel. The issue is in the nft_byteorder_eval() function, where the code iterates through a loop and writes to the `dst` array. On each iteration, 8 bytes are written, but `dst` is an array of u32, so each element only has space for 4 bytes. That means every iteration overwrites part of the previous element corrupting this array of u32. This flaw allows a local user to cause a denial of service or potentially break NetFilter functionality. | ||||
| CVE-2024-0564 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-14 | 5.3 Medium |
| A flaw was found in the Linux kernel's memory deduplication mechanism. The max page sharing of Kernel Samepage Merging (KSM), added in Linux kernel version 4.4.0-96.119, can create a side channel. When the attacker and the victim share the same host and the default setting of KSM is "max page sharing=256", it is possible for the attacker to time the unmap to merge with the victim's page. The unmapping time depends on whether it merges with the victim's page and additional physical pages are created beyond the KSM's "max page share". Through these operations, the attacker can leak the victim's page. | ||||
| CVE-2024-1394 | 1 Redhat | 23 Ansible Automation Platform, Ansible Automation Platform Developer, Ansible Automation Platform Inside and 20 more | 2025-09-13 | 7.5 High |
| A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them. | ||||
| CVE-2024-4629 | 1 Redhat | 12 Build Keycloak, Build Of Keycloak, Enterprise Linux and 9 more | 2025-09-12 | 6.5 Medium |
| A vulnerability was found in Keycloak. This flaw allows attackers to bypass brute force protection by exploiting the timing of login attempts. By initiating multiple login requests simultaneously, attackers can exceed the configured limits for failed attempts before the system locks them out. This timing loophole enables attackers to make more guesses at passwords than intended, potentially compromising account security on affected systems. | ||||
| CVE-2024-4540 | 1 Redhat | 3 Build Keycloak, Red Hat Single Sign On, Rhosemc | 2025-09-12 | 7.5 High |
| A flaw was found in Keycloak in OAuth 2.0 Pushed Authorization Requests (PAR). Client-provided parameters were found to be included in plain text in the KC_RESTART cookie returned by the authorization server's HTTP response to a `request_uri` authorization request, possibly leading to an information disclosure vulnerability. | ||||
| CVE-2024-5967 | 1 Redhat | 3 Build Keycloak, Red Hat Single Sign On, Rhosemc | 2025-09-12 | 2.7 Low |
| A vulnerability was found in Keycloak. The LDAP testing endpoint allows changing the Connection URL independently without re-entering the currently configured LDAP bind credentials. This flaw allows an attacker with admin access (permission manage-realm) to change the LDAP host URL ("Connection URL") to a machine they control. The Keycloak server will connect to the attacker's host and try to authenticate with the configured credentials, thus leaking them to the attacker. As a consequence, an attacker who has compromised the admin console or compromised a user with sufficient privileges can leak domain credentials and attack the domain. | ||||
| CVE-2023-39418 | 3 Debian, Postgresql, Redhat | 5 Debian Linux, Postgresql, Enterprise Linux and 2 more | 2025-09-12 | 3.1 Low |
| A vulnerability was found in PostgreSQL with the use of the MERGE command, which fails to test new rows against row security policies defined for UPDATE and SELECT. If UPDATE and SELECT policies forbid some rows that INSERT policies do not forbid, a user could store such rows. | ||||
| CVE-2023-4042 | 2 Artifex, Redhat | 9 Ghostscript, Codeready Linux Builder, Codeready Linux Builder For Arm64 and 6 more | 2025-09-12 | 5.5 Medium |
| A flaw was found in ghostscript. The fix for CVE-2020-16305 in ghostscript was not included in RHSA-2021:1852-06 advisory as it was claimed to be. This issue only affects the ghostscript package as shipped with Red Hat Enterprise Linux 8. | ||||
| CVE-2023-6484 | 1 Redhat | 3 Build Keycloak, Red Hat Single Sign On, Rhosemc | 2025-09-12 | 5.3 Medium |
| A log injection flaw was found in Keycloak. A text string may be injected through the authentication form when using the WebAuthn authentication mode. This issue may have a minor impact to the logs integrity. | ||||
| CVE-2024-9355 | 1 Redhat | 22 Amq Streams, Ansible Automation Platform, Container Native Virtualization and 19 more | 2025-09-12 | 6.5 Medium |
| A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum. It is also possible to force a derived key to be all zeros instead of an unpredictable value. This may have follow-on implications for the Go TLS stack. | ||||
| CVE-2024-9407 | 1 Redhat | 3 Enterprise Linux, Openshift, Rhel Eus | 2025-09-12 | 4.7 Medium |
| A vulnerability exists in the bind-propagation option of the Dockerfile RUN --mount instruction. The system does not properly validate the input passed to this option, allowing users to pass arbitrary parameters to the mount instruction. This issue can be exploited to mount sensitive directories from the host into a container during the build process and, in some cases, modify the contents of those mounted files. Even if SELinux is used, this vulnerability can bypass its protection by allowing the source directory to be relabeled to give the container access to host files. | ||||
| CVE-2024-9341 | 2 Containers, Redhat | 5 Common, Enterprise Linux, Openshift and 2 more | 2025-09-12 | 5.4 Medium |
| A flaw was found in Go. When FIPS mode is enabled on a system, container runtimes may incorrectly handle certain file paths due to improper validation in the containers/common Go library. This flaw allows an attacker to exploit symbolic links and trick the system into mounting sensitive host directories inside a container. This issue also allows attackers to access critical host files, bypassing the intended isolation between containers and the host system. | ||||
| CVE-2024-8883 | 1 Redhat | 10 Build Keycloak, Build Of Keycloak, Jboss Enterprise Application Platform and 7 more | 2025-09-12 | 6.1 Medium |
| A misconfiguration flaw was found in Keycloak. This issue can allow an attacker to redirect users to an arbitrary URL if a 'Valid Redirect URI' is set to http://localhost or http://127.0.0.1, enabling sensitive information such as authorization codes to be exposed to the attacker, potentially leading to session hijacking. | ||||
| CVE-2024-8676 | 1 Redhat | 2 Enterprise Linux, Openshift | 2025-09-12 | 7.4 High |
| A vulnerability was found in CRI-O, where it can be requested to take a checkpoint archive of a container and later be asked to restore it. When it does that restoration, it attempts to restore the mounts from the restore archive instead of the pod request. As a result, the validations run on the pod spec, verifying that the pod has access to the mounts it specifies are not applicable to a restored container. This flaw allows a malicious user to trick CRI-O into restoring a pod that doesn't have access to host mounts. The user needs access to the kubelet or cri-o socket to call the restore endpoint and trigger the restore. | ||||
| CVE-2024-8418 | 2 Containers, Redhat | 3 Aardvark-dns, Enterprise Linux, Openshift | 2025-09-12 | 7.5 High |
| A flaw was found in Aardvark-dns, which is vulnerable to a Denial of Service attack due to the serial processing of TCP DNS queries. An attacker can exploit this flaw by keeping a TCP connection open indefinitely, causing the server to become unresponsive and resulting in other DNS queries timing out. This issue prevents legitimate users from accessing DNS services, thereby disrupting normal operations and causing service downtime. | ||||
| CVE-2024-8445 | 1 Redhat | 3 Directory Server, Enterprise Linux, Rhel Els | 2025-09-12 | 5.7 Medium |
| The fix for CVE-2024-2199 in 389-ds-base was insufficient to cover all scenarios. In certain product versions, an authenticated user may cause a server crash while modifying `userPassword` using malformed input. | ||||