Filtered by vendor Linux Subscriptions
Total 13522 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-33117 2 Ibm, Linux 2 Qradar Security Information And Event Manager, Linux Kernel 2025-08-24 9.1 Critical
IBM QRadar SIEM 7.5 through 7.5.0 Update Package 12 could allow a privileged user to modify configuration files that would allow the upload of a malicious autoupdate file to execute arbitrary commands.
CVE-2025-33121 2 Ibm, Linux 2 Qradar Security Information And Event Manager, Linux Kernel 2025-08-24 7.1 High
IBM QRadar SIEM 7.5 through 7.5.0 Update Package 12 is vulnerable to an XML external entity injection (XXE) attack when processing XML data. A remote attacker could exploit this vulnerability to expose sensitive information or consume memory resources.
CVE-2025-3221 3 Ibm, Linux, Microsoft 4 Aix, Infosphere Information Server, Linux Kernel and 1 more 2025-08-24 7.5 High
IBM InfoSphere Information Server 11.7.0.0 through 11.7.1.6 could allow a remote attacker to cause a denial of service due to insufficient validation of incoming request resources.
CVE-2025-3629 3 Ibm, Linux, Microsoft 4 Aix, Infosphere Information Server, Linux Kernel and 1 more 2025-08-24 4.3 Medium
IBM InfoSphere Information Server 11.7.0.0 through 11.7.1.6 could allow an authenticated user to delete another user's comments due to improper ownership management.
CVE-2025-0966 3 Ibm, Linux, Microsoft 4 Aix, Infosphere Information Server, Linux Kernel and 1 more 2025-08-24 7.6 High
IBM InfoSphere Information Server 11.7 vulnerable to SQL injection. A remote attacker could send specially crafted SQL statements, which could allow the attacker to view, add, modify, or delete information in the back-end database.
CVE-2025-3630 3 Ibm, Linux, Microsoft 5 Aix, Sterling B2b Integrator, Sterling File Gateway and 2 more 2025-08-24 6.4 Medium
IBM Sterling B2B Integrator 6.0.0.0 through 6.1.2.6, 6.2.0.0 through 6.2.0.4, IBM Sterling File Gateway 6.0.0.0 through 6.1.2.6, and 6.2.0.0 through 6.2.0.4 is vulnerable to stored cross-site scripting. This vulnerability allows authenticated users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session.
CVE-2025-27367 3 Ibm, Linux, Microsoft 3 Openpages With Watson, Linux Kernel, Windows 2025-08-24 5.3 Medium
IBM OpenPages with Watson 8.3 and 9.0 is vulnerable to improper input validation due to bypassing of client-side validation for the data types and requiredness of fields for GRC Objects when an authenticated user sends a specially crafted payload to the server allowing for data to be saved without storing the required fields.
CVE-2025-27369 3 Ibm, Linux, Microsoft 3 Openpages With Watson, Linux Kernel, Windows 2025-08-24 4.3 Medium
IBM OpenPages with Watson 8.3 and 9.0 is vulnerable to information disclosure of sensitive information due to a weaker than expected security for certain REST end points used for the administration of OpenPages. An authenticated user is able to obtain certain information about system configuration and internal state which is only intended for administrators of the system.
CVE-2025-2793 3 Ibm, Linux, Microsoft 5 Aix, Sterling B2b Integrator, Sterling File Gateway and 2 more 2025-08-24 5.4 Medium
IBM Sterling B2B Integrator 6.0.0.0 through 6.1.2.6, 6.2.0.0 through 6.2.0.4, IBM Sterling File Gateway 6.0.0.0 through 6.1.2.6, and 6.2.0.0 through 6.2.0.4 is vulnerable to cross-site scripting. This vulnerability allows an authenticated user to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session.
CVE-2025-2827 3 Ibm, Linux, Microsoft 4 Aix, Sterling File Gateway, Linux Kernel and 1 more 2025-08-24 4.3 Medium
IBM Sterling File Gateway 6.0.0.0 through 6.1.2.6, and 6.2.0.0 through 6.2.0.4 could disclose sensitive installation directory information to an authenticated user that could be used in further attacks against the system.
CVE-2024-49783 3 Ibm, Linux, Microsoft 3 Openpages With Watson, Linux Kernel, Windows 2025-08-24 5.3 Medium
IBM OpenPages with Watson 8.3 and 9.0 could provide weaker than expected security in storage of encrypted data. If an authenticated remote attacker with access to the database or a local attacker with access to server files could extract the encrypted data, they could exploit this vulnerability to use additional cryptographic methods to possibly extract the encrypted data.
CVE-2024-49784 3 Ibm, Linux, Microsoft 3 Openpages With Watson, Linux Kernel, Windows 2025-08-24 5.3 Medium
IBM OpenPages with Watson 8.3 and 9.0 could provide weaker than expected security in storage of encrypted data with AES encryption and CBC mode. If an authenticated remote attacker with access to the database or a local attacker with access to server files could extract the encrypted data values they could exploit this weaker algorithm to use additional cryptographic methods to possibly extract the encrypted data.
CVE-2025-1112 3 Ibm, Linux, Microsoft 3 Openpages With Watson, Linux Kernel, Windows 2025-08-24 4.3 Medium
IBM OpenPages with Watson 8.3 and 9.0 could allow an authenticated user to obtain sensitive information that should only be available to privileged users.
CVE-2025-38626 1 Linux 1 Linux Kernel 2025-08-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to trigger foreground gc during f2fs_map_blocks() in lfs mode w/ "mode=lfs" mount option, generic/299 will cause system panic as below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/segment.c:2835! Call Trace: <TASK> f2fs_allocate_data_block+0x6f4/0xc50 f2fs_map_blocks+0x970/0x1550 f2fs_iomap_begin+0xb2/0x1e0 iomap_iter+0x1d6/0x430 __iomap_dio_rw+0x208/0x9a0 f2fs_file_write_iter+0x6b3/0xfa0 aio_write+0x15d/0x2e0 io_submit_one+0x55e/0xab0 __x64_sys_io_submit+0xa5/0x230 do_syscall_64+0x84/0x2f0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0010:new_curseg+0x70f/0x720 The root cause of we run out-of-space is: in f2fs_map_blocks(), f2fs may trigger foreground gc only if it allocates any physical block, it will be a little bit later when there is multiple threads writing data w/ aio/dio/bufio method in parallel, since we always use OPU in lfs mode, so f2fs_map_blocks() does block allocations aggressively. In order to fix this issue, let's give a chance to trigger foreground gc in prior to block allocation in f2fs_map_blocks().
CVE-2025-38641 1 Linux 1 Linux Kernel 2025-08-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: Fix potential NULL dereference on kmalloc failure Avoid potential NULL pointer dereference by checking the return value of kmalloc and handling allocation failure properly.
CVE-2025-38651 1 Linux 1 Linux Kernel 2025-08-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: landlock: Fix warning from KUnit tests get_id_range() expects a positive value as first argument but get_random_u8() can return 0. Fix this by clamping it. Validated by running the test in a for loop for 1000 times. Note that MAX() is wrong as it is only supposed to be used for constants, but max() is good here. [..] ok 9 test_range2_rand1 [..] ok 10 test_range2_rand2 [..] ok 11 test_range2_rand15 [..] ------------[ cut here ]------------ [..] WARNING: CPU: 6 PID: 104 at security/landlock/id.c:99 test_range2_rand16 (security/landlock/id.c:99 (discriminator 1) security/landlock/id.c:234 (discriminator 1)) [..] Modules linked in: [..] CPU: 6 UID: 0 PID: 104 Comm: kunit_try_catch Tainted: G N 6.16.0-rc1-dev-00001-g314a2f98b65f #1 PREEMPT(undef) [..] Tainted: [N]=TEST [..] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [..] RIP: 0010:test_range2_rand16 (security/landlock/id.c:99 (discriminator 1) security/landlock/id.c:234 (discriminator 1)) [..] Code: 49 c7 c0 10 70 30 82 4c 89 ff 48 c7 c6 a0 63 1e 83 49 c7 45 a0 e0 63 1e 83 e8 3f 95 17 00 e9 1f ff ff ff 0f 0b e9 df fd ff ff <0f> 0b ba 01 00 00 00 e9 68 fe ff ff 49 89 45 a8 49 8d 4d a0 45 31 [..] RSP: 0000:ffff888104eb7c78 EFLAGS: 00010246 [..] RAX: 0000000000000000 RBX: 000000000870822c RCX: 0000000000000000 ^^^^^^^^^^^^^^^^ [..] [..] Call Trace: [..] [..] ---[ end trace 0000000000000000 ]--- [..] ok 12 test_range2_rand16 [..] # landlock_id: pass:12 fail:0 skip:0 total:12 [..] # Totals: pass:12 fail:0 skip:0 total:12 [..] ok 1 landlock_id [mic: Minor cosmetic improvements]
CVE-2025-38660 1 Linux 1 Linux Kernel 2025-08-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: [ceph] parse_longname(): strrchr() expects NUL-terminated string ... and parse_longname() is not guaranteed that. That's the reason why it uses kmemdup_nul() to build the argument for kstrtou64(); the problem is, kstrtou64() is not the only thing that need it. Just get a NUL-terminated copy of the entire thing and be done with that...
CVE-2025-38662 1 Linux 1 Linux Kernel 2025-08-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8365-dai-i2s: pass correct size to mt8365_dai_set_priv Given mt8365_dai_set_priv allocate priv_size space to copy priv_data which means we should pass mt8365_i2s_priv[i] or "struct mtk_afe_i2s_priv" instead of afe_priv which has the size of "struct mt8365_afe_private". Otherwise the KASAN complains about. [ 59.389765] BUG: KASAN: global-out-of-bounds in mt8365_dai_set_priv+0xc8/0x168 [snd_soc_mt8365_pcm] ... [ 59.394789] Call trace: [ 59.395167] dump_backtrace+0xa0/0x128 [ 59.395733] show_stack+0x20/0x38 [ 59.396238] dump_stack_lvl+0xe8/0x148 [ 59.396806] print_report+0x37c/0x5e0 [ 59.397358] kasan_report+0xac/0xf8 [ 59.397885] kasan_check_range+0xe8/0x190 [ 59.398485] asan_memcpy+0x3c/0x98 [ 59.399022] mt8365_dai_set_priv+0xc8/0x168 [snd_soc_mt8365_pcm] [ 59.399928] mt8365_dai_i2s_register+0x1e8/0x2b0 [snd_soc_mt8365_pcm] [ 59.400893] mt8365_afe_pcm_dev_probe+0x4d0/0xdf0 [snd_soc_mt8365_pcm] [ 59.401873] platform_probe+0xcc/0x228 [ 59.402442] really_probe+0x340/0x9e8 [ 59.402992] driver_probe_device+0x16c/0x3f8 [ 59.403638] driver_probe_device+0x64/0x1d8 [ 59.404256] driver_attach+0x1dc/0x4c8 [ 59.404840] bus_for_each_dev+0x100/0x190 [ 59.405442] driver_attach+0x44/0x68 [ 59.405980] bus_add_driver+0x23c/0x500 [ 59.406550] driver_register+0xf8/0x3d0 [ 59.407122] platform_driver_register+0x68/0x98 [ 59.407810] mt8365_afe_pcm_driver_init+0x2c/0xff8 [snd_soc_mt8365_pcm]
CVE-2025-38658 1 Linux 1 Linux Kernel 2025-08-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvmet: pci-epf: Do not complete commands twice if nvmet_req_init() fails Have nvmet_req_init() and req->execute() complete failed commands. Description of the problem: nvmet_req_init() calls __nvmet_req_complete() internally upon failure, e.g., unsupported opcode, which calls the "queue_response" callback, this results in nvmet_pci_epf_queue_response() being called, which will call nvmet_pci_epf_complete_iod() if data_len is 0 or if dma_dir is different from DMA_TO_DEVICE. This results in a double completion as nvmet_pci_epf_exec_iod_work() also calls nvmet_pci_epf_complete_iod() when nvmet_req_init() fails. Steps to reproduce: On the host send a command with an unsupported opcode with nvme-cli, For example the admin command "security receive" $ sudo nvme security-recv /dev/nvme0n1 -n1 -x4096 This triggers a double completion as nvmet_req_init() fails and nvmet_pci_epf_queue_response() is called, here iod->dma_dir is still in the default state of "DMA_NONE" as set by default in nvmet_pci_epf_alloc_iod(), so nvmet_pci_epf_complete_iod() is called. Because nvmet_req_init() failed nvmet_pci_epf_complete_iod() is also called in nvmet_pci_epf_exec_iod_work() leading to a double completion. This not only sends two completions to the host but also corrupts the state of the PCI NVMe target leading to kernel oops. This patch lets nvmet_req_init() and req->execute() complete all failed commands, and removes the double completion case in nvmet_pci_epf_exec_iod_work() therefore fixing the edge cases where double completions occurred.
CVE-2025-38619 1 Linux 1 Linux Kernel 2025-08-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: ti: j721e-csi2rx: fix list_del corruption If ti_csi2rx_start_dma() fails in ti_csi2rx_dma_callback(), the buffer is marked done with VB2_BUF_STATE_ERROR but is not removed from the DMA queue. This causes the same buffer to be retried in the next iteration, resulting in a double list_del() and eventual list corruption. Fix this by removing the buffer from the queue before calling vb2_buffer_done() on error. This resolves a crash due to list_del corruption: [ 37.811243] j721e-csi2rx 30102000.ticsi2rx: Failed to queue the next buffer for DMA [ 37.832187] slab kmalloc-2k start ffff00000255b000 pointer offset 1064 size 2048 [ 37.839761] list_del corruption. next->prev should be ffff00000255bc28, but was ffff00000255d428. (next=ffff00000255b428) [ 37.850799] ------------[ cut here ]------------ [ 37.855424] kernel BUG at lib/list_debug.c:65! [ 37.859876] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 37.866061] Modules linked in: i2c_dev usb_f_rndis u_ether libcomposite dwc3 udc_core usb_common aes_ce_blk aes_ce_cipher ghash_ce gf128mul sha1_ce cpufreq_dt dwc3_am62 phy_gmii_sel sa2ul [ 37.882830] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.16.0-rc3+ #28 VOLUNTARY [ 37.890851] Hardware name: Bosch STLA-GSRV2-B0 (DT) [ 37.895737] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 37.902703] pc : __list_del_entry_valid_or_report+0xdc/0x114 [ 37.908390] lr : __list_del_entry_valid_or_report+0xdc/0x114 [ 37.914059] sp : ffff800080003db0 [ 37.917375] x29: ffff800080003db0 x28: 0000000000000007 x27: ffff800080e50000 [ 37.924521] x26: 0000000000000000 x25: ffff0000016abb50 x24: dead000000000122 [ 37.931666] x23: ffff0000016abb78 x22: ffff0000016ab080 x21: ffff800080003de0 [ 37.938810] x20: ffff00000255bc00 x19: ffff00000255b800 x18: 000000000000000a [ 37.945956] x17: 20747562202c3832 x16: 6362353532303030 x15: 0720072007200720 [ 37.953101] x14: 0720072007200720 x13: 0720072007200720 x12: 00000000ffffffea [ 37.960248] x11: ffff800080003b18 x10: 00000000ffffefff x9 : ffff800080f5b568 [ 37.967396] x8 : ffff800080f5b5c0 x7 : 0000000000017fe8 x6 : c0000000ffffefff [ 37.974542] x5 : ffff00000fea6688 x4 : 0000000000000000 x3 : 0000000000000000 [ 37.981686] x2 : 0000000000000000 x1 : ffff800080ef2b40 x0 : 000000000000006d [ 37.988832] Call trace: [ 37.991281] __list_del_entry_valid_or_report+0xdc/0x114 (P) [ 37.996959] ti_csi2rx_dma_callback+0x84/0x1c4 [ 38.001419] udma_vchan_complete+0x1e0/0x344 [ 38.005705] tasklet_action_common+0x118/0x310 [ 38.010163] tasklet_action+0x30/0x3c [ 38.013832] handle_softirqs+0x10c/0x2e0 [ 38.017761] __do_softirq+0x14/0x20 [ 38.021256] ____do_softirq+0x10/0x20 [ 38.024931] call_on_irq_stack+0x24/0x60 [ 38.028873] do_softirq_own_stack+0x1c/0x40 [ 38.033064] __irq_exit_rcu+0x130/0x15c [ 38.036909] irq_exit_rcu+0x10/0x20 [ 38.040403] el1_interrupt+0x38/0x60 [ 38.043987] el1h_64_irq_handler+0x18/0x24 [ 38.048091] el1h_64_irq+0x6c/0x70 [ 38.051501] default_idle_call+0x34/0xe0 (P) [ 38.055783] do_idle+0x1f8/0x250 [ 38.059021] cpu_startup_entry+0x34/0x3c [ 38.062951] rest_init+0xb4/0xc0 [ 38.066186] console_on_rootfs+0x0/0x6c [ 38.070031] __primary_switched+0x88/0x90 [ 38.074059] Code: b00037e0 91378000 f9400462 97e9bf49 (d4210000) [ 38.080168] ---[ end trace 0000000000000000 ]--- [ 38.084795] Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt [ 38.092197] SMP: stopping secondary CPUs [ 38.096139] Kernel Offset: disabled [ 38.099631] CPU features: 0x0000,00002000,02000801,0400420b [ 38.105202] Memory Limit: none [ 38.108260] ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt ]---