Total
310690 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-10563 | 1 Campcodes | 1 Grocery Sales And Inventory System | 2025-09-17 | 7.3 High |
| A vulnerability has been found in Campcodes Grocery Sales and Inventory System 1.0. This impacts an unknown function of the file /ajax.php?action=save_category. Such manipulation of the argument ID leads to sql injection. The attack can be executed remotely. The exploit has been disclosed to the public and may be used. | ||||
| CVE-2025-39823 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: KVM: x86: use array_index_nospec with indices that come from guest min and dest_id are guest-controlled indices. Using array_index_nospec() after the bounds checks clamps these values to mitigate speculative execution side-channels. | ||||
| CVE-2025-39824 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: HID: asus: fix UAF via HID_CLAIMED_INPUT validation After hid_hw_start() is called hidinput_connect() will eventually be called to set up the device with the input layer since the HID_CONNECT_DEFAULT connect mask is used. During hidinput_connect() all input and output reports are processed and corresponding hid_inputs are allocated and configured via hidinput_configure_usages(). This process involves slot tagging report fields and configuring usages by setting relevant bits in the capability bitmaps. However it is possible that the capability bitmaps are not set at all leading to the subsequent hidinput_has_been_populated() check to fail leading to the freeing of the hid_input and the underlying input device. This becomes problematic because a malicious HID device like a ASUS ROG N-Key keyboard can trigger the above scenario via a specially crafted descriptor which then leads to a user-after-free when the name of the freed input device is written to later on after hid_hw_start(). Below, report 93 intentionally utilises the HID_UP_UNDEFINED Usage Page which is skipped during usage configuration, leading to the frees. 0x05, 0x0D, // Usage Page (Digitizer) 0x09, 0x05, // Usage (Touch Pad) 0xA1, 0x01, // Collection (Application) 0x85, 0x0D, // Report ID (13) 0x06, 0x00, 0xFF, // Usage Page (Vendor Defined 0xFF00) 0x09, 0xC5, // Usage (0xC5) 0x15, 0x00, // Logical Minimum (0) 0x26, 0xFF, 0x00, // Logical Maximum (255) 0x75, 0x08, // Report Size (8) 0x95, 0x04, // Report Count (4) 0xB1, 0x02, // Feature (Data,Var,Abs) 0x85, 0x5D, // Report ID (93) 0x06, 0x00, 0x00, // Usage Page (Undefined) 0x09, 0x01, // Usage (0x01) 0x15, 0x00, // Logical Minimum (0) 0x26, 0xFF, 0x00, // Logical Maximum (255) 0x75, 0x08, // Report Size (8) 0x95, 0x1B, // Report Count (27) 0x81, 0x02, // Input (Data,Var,Abs) 0xC0, // End Collection Below is the KASAN splat after triggering the UAF: [ 21.672709] ================================================================== [ 21.673700] BUG: KASAN: slab-use-after-free in asus_probe+0xeeb/0xf80 [ 21.673700] Write of size 8 at addr ffff88810a0ac000 by task kworker/1:2/54 [ 21.673700] [ 21.673700] CPU: 1 UID: 0 PID: 54 Comm: kworker/1:2 Not tainted 6.16.0-rc4-g9773391cf4dd-dirty #36 PREEMPT(voluntary) [ 21.673700] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 [ 21.673700] Call Trace: [ 21.673700] <TASK> [ 21.673700] dump_stack_lvl+0x5f/0x80 [ 21.673700] print_report+0xd1/0x660 [ 21.673700] kasan_report+0xe5/0x120 [ 21.673700] __asan_report_store8_noabort+0x1b/0x30 [ 21.673700] asus_probe+0xeeb/0xf80 [ 21.673700] hid_device_probe+0x2ee/0x700 [ 21.673700] really_probe+0x1c6/0x6b0 [ 21.673700] __driver_probe_device+0x24f/0x310 [ 21.673700] driver_probe_device+0x4e/0x220 [...] [ 21.673700] [ 21.673700] Allocated by task 54: [ 21.673700] kasan_save_stack+0x3d/0x60 [ 21.673700] kasan_save_track+0x18/0x40 [ 21.673700] kasan_save_alloc_info+0x3b/0x50 [ 21.673700] __kasan_kmalloc+0x9c/0xa0 [ 21.673700] __kmalloc_cache_noprof+0x139/0x340 [ 21.673700] input_allocate_device+0x44/0x370 [ 21.673700] hidinput_connect+0xcb6/0x2630 [ 21.673700] hid_connect+0xf74/0x1d60 [ 21.673700] hid_hw_start+0x8c/0x110 [ 21.673700] asus_probe+0x5a3/0xf80 [ 21.673700] hid_device_probe+0x2ee/0x700 [ 21.673700] really_probe+0x1c6/0x6b0 [ 21.673700] __driver_probe_device+0x24f/0x310 [ 21.673700] driver_probe_device+0x4e/0x220 [...] [ 21.673700] [ 21.673700] Freed by task 54: [ 21.673700] kasan_save_stack+0x3d/0x60 [ 21.673700] kasan_save_track+0x18/0x40 [ 21.673700] kasan_save_free_info+0x3f/0x60 [ 21.673700] __kasan_slab_free+0x3c/0x50 [ 21.673700] kfre ---truncated--- | ||||
| CVE-2025-39831 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fbnic: Move phylink resume out of service_task and into open/close The fbnic driver was presenting with the following locking assert coming out of a PM resume: [ 42.208116][ T164] RTNL: assertion failed at drivers/net/phy/phylink.c (2611) [ 42.208492][ T164] WARNING: CPU: 1 PID: 164 at drivers/net/phy/phylink.c:2611 phylink_resume+0x190/0x1e0 [ 42.208872][ T164] Modules linked in: [ 42.209140][ T164] CPU: 1 UID: 0 PID: 164 Comm: bash Not tainted 6.17.0-rc2-virtme #134 PREEMPT(full) [ 42.209496][ T164] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-5.fc42 04/01/2014 [ 42.209861][ T164] RIP: 0010:phylink_resume+0x190/0x1e0 [ 42.210057][ T164] Code: 83 e5 01 0f 85 b0 fe ff ff c6 05 1c cd 3e 02 01 90 ba 33 0a 00 00 48 c7 c6 20 3a 1d a5 48 c7 c7 e0 3e 1d a5 e8 21 b8 90 fe 90 <0f> 0b 90 90 e9 86 fe ff ff e8 42 ea 1f ff e9 e2 fe ff ff 48 89 ef [ 42.210708][ T164] RSP: 0018:ffffc90000affbd8 EFLAGS: 00010296 [ 42.210983][ T164] RAX: 0000000000000000 RBX: ffff8880078d8400 RCX: 0000000000000000 [ 42.211235][ T164] RDX: 0000000000000000 RSI: 1ffffffff4f10938 RDI: 0000000000000001 [ 42.211466][ T164] RBP: 0000000000000000 R08: ffffffffa2ae79ea R09: fffffbfff4b3eb84 [ 42.211707][ T164] R10: 0000000000000003 R11: 0000000000000000 R12: ffff888007ad8000 [ 42.211997][ T164] R13: 0000000000000002 R14: ffff888006a18800 R15: ffffffffa34c59e0 [ 42.212234][ T164] FS: 00007f0dc8e39740(0000) GS:ffff88808f51f000(0000) knlGS:0000000000000000 [ 42.212505][ T164] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 42.212704][ T164] CR2: 00007f0dc8e9fe10 CR3: 000000000b56d003 CR4: 0000000000772ef0 [ 42.213227][ T164] PKRU: 55555554 [ 42.213366][ T164] Call Trace: [ 42.213483][ T164] <TASK> [ 42.213565][ T164] __fbnic_pm_attach.isra.0+0x8e/0xa0 [ 42.213725][ T164] pci_reset_function+0x116/0x1d0 [ 42.213895][ T164] reset_store+0xa0/0x100 [ 42.214025][ T164] ? pci_dev_reset_attr_is_visible+0x50/0x50 [ 42.214221][ T164] ? sysfs_file_kobj+0xc1/0x1e0 [ 42.214374][ T164] ? sysfs_kf_write+0x65/0x160 [ 42.214526][ T164] kernfs_fop_write_iter+0x2f8/0x4c0 [ 42.214677][ T164] ? kernfs_vma_page_mkwrite+0x1f0/0x1f0 [ 42.214836][ T164] new_sync_write+0x308/0x6f0 [ 42.214987][ T164] ? __lock_acquire+0x34c/0x740 [ 42.215135][ T164] ? new_sync_read+0x6f0/0x6f0 [ 42.215288][ T164] ? lock_acquire.part.0+0xbc/0x260 [ 42.215440][ T164] ? ksys_write+0xff/0x200 [ 42.215590][ T164] ? perf_trace_sched_switch+0x6d0/0x6d0 [ 42.215742][ T164] vfs_write+0x65e/0xbb0 [ 42.215876][ T164] ksys_write+0xff/0x200 [ 42.215994][ T164] ? __ia32_sys_read+0xc0/0xc0 [ 42.216141][ T164] ? do_user_addr_fault+0x269/0x9f0 [ 42.216292][ T164] ? rcu_is_watching+0x15/0xd0 [ 42.216442][ T164] do_syscall_64+0xbb/0x360 [ 42.216591][ T164] entry_SYSCALL_64_after_hwframe+0x4b/0x53 [ 42.216784][ T164] RIP: 0033:0x7f0dc8ea9986 A bit of digging showed that we were invoking the phylink_resume as a part of the fbnic_up path when we were enabling the service task while not holding the RTNL lock. We should be enabling this sooner as a part of the ndo_open path and then just letting the service task come online later. This will help to enforce the correct locking and brings the phylink interface online at the same time as the network interface, instead of at a later time. I tested this on QEMU to verify this was working by putting the system to sleep using "echo mem > /sys/power/state" to put the system to sleep in the guest and then using the command "system_wakeup" in the QEMU monitor. | ||||
| CVE-2025-37123 | 2 Arubanetworks, Hp | 2 Edgeconnect Enterprise, Arubaos | 2025-09-17 | 8.8 High |
| A vulnerability in the command-line interface of HPE Aruba Networking EdgeConnect SD-WAN Gateways could allow an authenticated remote attacker to escalate privileges. Successful exploitation of this vulnerability may enable the attacker to execute arbitrary system commands with root privileges on the underlying operating system. | ||||
| CVE-2025-37124 | 2 Arubanetworks, Hp | 2 Edgeconnect Enterprise, Arubaos | 2025-09-17 | 8.6 High |
| A vulnerability in the HPE Aruba Networking SD-WAN Gateways could allow an unauthenticated remote attacker to bypass firewall protections. Successful exploitation could allow an attacker to route potentially harmful traffic through the internal network, leading to unauthorized access or disruption of services. | ||||
| CVE-2025-37125 | 2 Arubanetworks, Hp | 2 Edgeconnect Enterprise, Arubaos | 2025-09-17 | 7.5 High |
| A broken access control vulnerability exists in HPE Aruba Networking EdgeConnect OS (ECOS). Successful exploitation could allow an attacker to bypass firewall protections, potentially leading to unauthorized traffic being handled improperly | ||||
| CVE-2025-37126 | 2 Arubanetworks, Hp | 2 Edgeconnect Enterprise, Arubaos | 2025-09-17 | 7.2 High |
| A vulnerability exists in the HPE Aruba Networking EdgeConnect SD-WAN Gateways Command Line Interface that allows remote authenticated users to run arbitrary commands on the underlying host. Successful exploitation of this vulnerability will result in the ability to execute arbitrary commands as root on the underlying operating system. | ||||
| CVE-2025-37127 | 2 Arubanetworks, Hp | 2 Edgeconnect Enterprise, Arubaos | 2025-09-17 | 7.2 High |
| A vulnerability in the cryptographic logic used by HPE Aruba Networking EdgeConnect SD-WAN Gateways could allow an authenticated remote attacker to gain shell access. Successful exploitation could allow an attacker to execute arbitrary commands on the underlying operating system, potentially leading to unauthorized access and control over the affected systems. | ||||
| CVE-2025-37129 | 2 Arubanetworks, Hp | 2 Edgeconnect Enterprise, Arubaos | 2025-09-17 | 6.7 Medium |
| A vulnerable feature in the command line interface of EdgeConnect SD-WAN could allow an authenticated attacker to exploit built-in script execution capabilities. Successful exploitation could allow an attacker to execute arbitrary commands on the underlying operating system if the feature is enabled without proper security measures. | ||||
| CVE-2025-37131 | 2 Arubanetworks, Hp | 2 Edgeconnect Enterprise, Arubaos | 2025-09-17 | 4.9 Medium |
| A vulnerability in EdgeConnect SD-WAN ECOS could allow an authenticated remote threat actor with admin privileges to access sensitive unauthorized system files. Under certain conditions, this could lead to exposure and exfiltration of sensitive information. | ||||
| CVE-2009-20005 | 2025-09-17 | N/A | ||
| A stack-based buffer overflow exists in the UtilConfigHome.csp endpoint of InterSystems Caché 2009.1. The vulnerability is triggered by sending a specially crafted HTTP GET request containing an oversized argument to the .csp handler. Due to insufficient bounds checking, the input overflows a stack buffer, allowing an attacker to overwrite control structures and execute arbitrary code. It is unknown if this vulnerability was patched and an affected version range remains undefined. | ||||
| CVE-2025-36244 | 1 Ibm | 2 Aix, Vios | 2025-09-17 | 7.4 High |
| IBM AIX 7.2, 7.3, IBM VIOS 3.1, and 4.1, when configured to use Kerberos network authentication, could allow a local user to write to files on the system with root privileges due to improper initialization of critical variables. | ||||
| CVE-2025-55110 | 1 Bmc | 1 Control-m/agent | 2025-09-17 | 5.5 Medium |
| Control-M/Agents use a kdb or PKCS#12 keystore by default, and the default keystore password is well known and documented. An attacker with read access to the keystore could access sensitive data using this password. | ||||
| CVE-2025-39833 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mISDN: hfcpci: Fix warning when deleting uninitialized timer With CONFIG_DEBUG_OBJECTS_TIMERS unloading hfcpci module leads to the following splat: [ 250.215892] ODEBUG: assert_init not available (active state 0) object: ffffffffc01a3dc0 object type: timer_list hint: 0x0 [ 250.217520] WARNING: CPU: 0 PID: 233 at lib/debugobjects.c:612 debug_print_object+0x1b6/0x2c0 [ 250.218775] Modules linked in: hfcpci(-) mISDN_core [ 250.219537] CPU: 0 UID: 0 PID: 233 Comm: rmmod Not tainted 6.17.0-rc2-g6f713187ac98 #2 PREEMPT(voluntary) [ 250.220940] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 250.222377] RIP: 0010:debug_print_object+0x1b6/0x2c0 [ 250.223131] Code: fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 75 4f 41 56 48 8b 14 dd a0 4e 01 9f 48 89 ee 48 c7 c7 20 46 01 9f e8 cb 84d [ 250.225805] RSP: 0018:ffff888015ea7c08 EFLAGS: 00010286 [ 250.226608] RAX: 0000000000000000 RBX: 0000000000000005 RCX: ffffffff9be93a95 [ 250.227708] RDX: 1ffff1100d945138 RSI: 0000000000000008 RDI: ffff88806ca289c0 [ 250.228993] RBP: ffffffff9f014a00 R08: 0000000000000001 R09: ffffed1002bd4f39 [ 250.230043] R10: ffff888015ea79cf R11: 0000000000000001 R12: 0000000000000001 [ 250.231185] R13: ffffffff9eea0520 R14: 0000000000000000 R15: ffff888015ea7cc8 [ 250.232454] FS: 00007f3208f01540(0000) GS:ffff8880caf5a000(0000) knlGS:0000000000000000 [ 250.233851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 250.234856] CR2: 00007f32090a7421 CR3: 0000000004d63000 CR4: 00000000000006f0 [ 250.236117] Call Trace: [ 250.236599] <TASK> [ 250.236967] ? trace_irq_enable.constprop.0+0xd4/0x130 [ 250.237920] debug_object_assert_init+0x1f6/0x310 [ 250.238762] ? __pfx_debug_object_assert_init+0x10/0x10 [ 250.239658] ? __lock_acquire+0xdea/0x1c70 [ 250.240369] __try_to_del_timer_sync+0x69/0x140 [ 250.241172] ? __pfx___try_to_del_timer_sync+0x10/0x10 [ 250.242058] ? __timer_delete_sync+0xc6/0x120 [ 250.242842] ? lock_acquire+0x30/0x80 [ 250.243474] ? __timer_delete_sync+0xc6/0x120 [ 250.244262] __timer_delete_sync+0x98/0x120 [ 250.245015] HFC_cleanup+0x10/0x20 [hfcpci] [ 250.245704] __do_sys_delete_module+0x348/0x510 [ 250.246461] ? __pfx___do_sys_delete_module+0x10/0x10 [ 250.247338] do_syscall_64+0xc1/0x360 [ 250.247924] entry_SYSCALL_64_after_hwframe+0x77/0x7f Fix this by initializing hfc_tl timer with DEFINE_TIMER macro. Also, use mod_timer instead of manual timeout update. | ||||
| CVE-2025-41243 | 1 Spring | 2 Spring, Webflux | 2025-09-17 | 10 Critical |
| Spring Cloud Gateway Server Webflux may be vulnerable to Spring Environment property modification. An application should be considered vulnerable when all the following are true: * The application is using Spring Cloud Gateway Server Webflux (Spring Cloud Gateway Server WebMVC is not vulnerable). * Spring Boot actuator is a dependency. * The Spring Cloud Gateway Server Webflux actuator web endpoint is enabled via management.endpoints.web.exposure.include=gateway. * The actuator endpoints are available to attackers. * The actuator endpoints are unsecured. | ||||
| CVE-2022-50349 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: misc: tifm: fix possible memory leak in tifm_7xx1_switch_media() If device_register() returns error in tifm_7xx1_switch_media(), name of kobject which is allocated in dev_set_name() called in device_add() is leaked. Never directly free @dev after calling device_register(), even if it returned an error! Always use put_device() to give up the reference initialized. | ||||
| CVE-2023-53305 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix use-after-free Fix potential use-after-free in l2cap_le_command_rej. | ||||
| CVE-2023-53306 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: fsdax: force clear dirty mark if CoW XFS allows CoW on non-shared extents to combat fragmentation[1]. The old non-shared extent could be mwrited before, its dax entry is marked dirty. This results in a WARNing: [ 28.512349] ------------[ cut here ]------------ [ 28.512622] WARNING: CPU: 2 PID: 5255 at fs/dax.c:390 dax_insert_entry+0x342/0x390 [ 28.513050] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 nfs lockd grace fscache netfs nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables [ 28.515462] CPU: 2 PID: 5255 Comm: fsstress Kdump: loaded Not tainted 6.3.0-rc1-00001-g85e1481e19c1-dirty #117 [ 28.515902] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Arch Linux 1.16.1-1-1 04/01/2014 [ 28.516307] RIP: 0010:dax_insert_entry+0x342/0x390 [ 28.516536] Code: 30 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 48 8b 45 20 48 83 c0 01 e9 e2 fe ff ff 48 8b 45 20 48 83 c0 01 e9 cd fe ff ff <0f> 0b e9 53 ff ff ff 48 8b 7c 24 08 31 f6 e8 1b 61 a1 00 eb 8c 48 [ 28.517417] RSP: 0000:ffffc9000845fb18 EFLAGS: 00010086 [ 28.517721] RAX: 0000000000000053 RBX: 0000000000000155 RCX: 000000000018824b [ 28.518113] RDX: 0000000000000000 RSI: ffffffff827525a6 RDI: 00000000ffffffff [ 28.518515] RBP: ffffea00062092c0 R08: 0000000000000000 R09: ffffc9000845f9c8 [ 28.518905] R10: 0000000000000003 R11: ffffffff82ddb7e8 R12: 0000000000000155 [ 28.519301] R13: 0000000000000000 R14: 000000000018824b R15: ffff88810cfa76b8 [ 28.519703] FS: 00007f14a0c94740(0000) GS:ffff88817bd00000(0000) knlGS:0000000000000000 [ 28.520148] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 28.520472] CR2: 00007f14a0c8d000 CR3: 000000010321c004 CR4: 0000000000770ee0 [ 28.520863] PKRU: 55555554 [ 28.521043] Call Trace: [ 28.521219] <TASK> [ 28.521368] dax_fault_iter+0x196/0x390 [ 28.521595] dax_iomap_pte_fault+0x19b/0x3d0 [ 28.521852] __xfs_filemap_fault+0x234/0x2b0 [ 28.522116] __do_fault+0x30/0x130 [ 28.522334] do_fault+0x193/0x340 [ 28.522586] __handle_mm_fault+0x2d3/0x690 [ 28.522975] handle_mm_fault+0xe6/0x2c0 [ 28.523259] do_user_addr_fault+0x1bc/0x6f0 [ 28.523521] exc_page_fault+0x60/0x140 [ 28.523763] asm_exc_page_fault+0x22/0x30 [ 28.524001] RIP: 0033:0x7f14a0b589ca [ 28.524225] Code: c5 fe 7f 07 c5 fe 7f 47 20 c5 fe 7f 47 40 c5 fe 7f 47 60 c5 f8 77 c3 66 0f 1f 84 00 00 00 00 00 40 0f b6 c6 48 89 d1 48 89 fa <f3> aa 48 89 d0 c5 f8 77 c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 [ 28.525198] RSP: 002b:00007fff1dea1c98 EFLAGS: 00010202 [ 28.525505] RAX: 000000000000001e RBX: 000000000014a000 RCX: 0000000000006046 [ 28.525895] RDX: 00007f14a0c82000 RSI: 000000000000001e RDI: 00007f14a0c8d000 [ 28.526290] RBP: 000000000000006f R08: 0000000000000004 R09: 000000000014a000 [ 28.526681] R10: 0000000000000008 R11: 0000000000000246 R12: 028f5c28f5c28f5c [ 28.527067] R13: 8f5c28f5c28f5c29 R14: 0000000000011046 R15: 00007f14a0c946c0 [ 28.527449] </TASK> [ 28.527600] ---[ end trace 0000000000000000 ]--- To be able to delete this entry, clear its dirty mark before invalidate_inode_pages2_range(). [1] https://lore.kernel.org/linux-xfs/20230321151339.GA11376@frogsfrogsfrogs/ | ||||
| CVE-2023-53314 | 1 Linux | 1 Linux Kernel | 2025-09-17 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fbdev/ep93xx-fb: Do not assign to struct fb_info.dev Do not assing the Linux device to struct fb_info.dev. The call to register_framebuffer() initializes the field to the fbdev device. Drivers should not override its value. Fixes a bug where the driver incorrectly decreases the hardware device's reference counter and leaks the fbdev device. v2: * add Fixes tag (Dan) | ||||