Filtered by vendor Linux
Subscriptions
Total
13522 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-39716 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: parisc: Revise __get_user() to probe user read access Because of the way read access support is implemented, read access interruptions are only triggered at privilege levels 2 and 3. The kernel executes at privilege level 0, so __get_user() never triggers a read access interruption (code 26). Thus, it is currently possible for user code to access a read protected address via a system call. Fix this by probing read access rights at privilege level 3 (PRIV_USER) and setting __gu_err to -EFAULT (-14) if access isn't allowed. Note the cmpiclr instruction does a 32-bit compare because COND macro doesn't work inside asm. | ||||
| CVE-2025-39717 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: open_tree_attr: do not allow id-mapping changes without OPEN_TREE_CLONE As described in commit 7a54947e727b ('Merge patch series "fs: allow changing idmappings"'), open_tree_attr(2) was necessary in order to allow for a detached mount to be created and have its idmappings changed without the risk of any racing threads operating on it. For this reason, mount_setattr(2) still does not allow for id-mappings to be changed. However, there was a bug in commit 2462651ffa76 ("fs: allow changing idmappings") which allowed users to bypass this restriction by calling open_tree_attr(2) *without* OPEN_TREE_CLONE. can_idmap_mount() prevented this bug from allowing an attached mountpoint's id-mapping from being modified (thanks to an is_anon_ns() check), but this still allows for detached (but visible) mounts to have their be id-mapping changed. This risks the same UAF and locking issues as described in the merge commit, and was likely unintentional. | ||||
| CVE-2025-39718 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: Validate length in packet header before skb_put() When receiving a vsock packet in the guest, only the virtqueue buffer size is validated prior to virtio_vsock_skb_rx_put(). Unfortunately, virtio_vsock_skb_rx_put() uses the length from the packet header as the length argument to skb_put(), potentially resulting in SKB overflow if the host has gone wonky. Validate the length as advertised by the packet header before calling virtio_vsock_skb_rx_put(). | ||||
| CVE-2025-39720 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix refcount leak causing resource not released When ksmbd_conn_releasing(opinfo->conn) returns true,the refcount was not decremented properly, causing a refcount leak that prevents the count from reaching zero and the memory from being released. | ||||
| CVE-2025-39723 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: netfs: Fix unbuffered write error handling If all the subrequests in an unbuffered write stream fail, the subrequest collector doesn't update the stream->transferred value and it retains its initial LONG_MAX value. Unfortunately, if all active streams fail, then we take the smallest value of { LONG_MAX, LONG_MAX, ... } as the value to set in wreq->transferred - which is then returned from ->write_iter(). LONG_MAX was chosen as the initial value so that all the streams can be quickly assessed by taking the smallest value of all stream->transferred - but this only works if we've set any of them. Fix this by adding a flag to indicate whether the value in stream->transferred is valid and checking that when we integrate the values. stream->transferred can then be initialised to zero. This was found by running the generic/750 xfstest against cifs with cache=none. It splices data to the target file. Once (if) it has used up all the available scratch space, the writes start failing with ENOSPC. This causes ->write_iter() to fail. However, it was returning wreq->transferred, i.e. LONG_MAX, rather than an error (because it thought the amount transferred was non-zero) and iter_file_splice_write() would then try to clean up that amount of pipe bufferage - leading to an oops when it overran. The kernel log showed: CIFS: VFS: Send error in write = -28 followed by: BUG: kernel NULL pointer dereference, address: 0000000000000008 with: RIP: 0010:iter_file_splice_write+0x3a4/0x520 do_splice+0x197/0x4e0 or: RIP: 0010:pipe_buf_release (include/linux/pipe_fs_i.h:282) iter_file_splice_write (fs/splice.c:755) Also put a warning check into splice to announce if ->write_iter() returned that it had written more than it was asked to. | ||||
| CVE-2025-39724 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: serial: 8250: fix panic due to PSLVERR When the PSLVERR_RESP_EN parameter is set to 1, the device generates an error response if an attempt is made to read an empty RBR (Receive Buffer Register) while the FIFO is enabled. In serial8250_do_startup(), calling serial_port_out(port, UART_LCR, UART_LCR_WLEN8) triggers dw8250_check_lcr(), which invokes dw8250_force_idle() and serial8250_clear_and_reinit_fifos(). The latter function enables the FIFO via serial_out(p, UART_FCR, p->fcr). Execution proceeds to the serial_port_in(port, UART_RX). This satisfies the PSLVERR trigger condition. When another CPU (e.g., using printk()) is accessing the UART (UART is busy), the current CPU fails the check (value & ~UART_LCR_SPAR) == (lcr & ~UART_LCR_SPAR) in dw8250_check_lcr(), causing it to enter dw8250_force_idle(). Put serial_port_out(port, UART_LCR, UART_LCR_WLEN8) under the port->lock to fix this issue. Panic backtrace: [ 0.442336] Oops - unknown exception [#1] [ 0.442343] epc : dw8250_serial_in32+0x1e/0x4a [ 0.442351] ra : serial8250_do_startup+0x2c8/0x88e ... [ 0.442416] console_on_rootfs+0x26/0x70 | ||||
| CVE-2025-39725 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: fix hwpoisoned large folio handling in shrink_folio_list In shrink_folio_list(), the hwpoisoned folio may be large folio, which can't be handled by unmap_poisoned_folio(). For THP, try_to_unmap_one() must be passed with TTU_SPLIT_HUGE_PMD to split huge PMD first and then retry. Without TTU_SPLIT_HUGE_PMD, we will trigger null-ptr deref of pvmw.pte. Even we passed TTU_SPLIT_HUGE_PMD, we will trigger a WARN_ON_ONCE due to the page isn't in swapcache. Since UCE is rare in real world, and race with reclaimation is more rare, just skipping the hwpoisoned large folio is enough. memory_failure() will handle it if the UCE is triggered again. This happens when memory reclaim for large folio races with memory_failure(), and will lead to kernel panic. The race is as follows: cpu0 cpu1 shrink_folio_list memory_failure TestSetPageHWPoison unmap_poisoned_folio --> trigger BUG_ON due to unmap_poisoned_folio couldn't handle large folio [tujinjiang@huawei.com: add comment to unmap_poisoned_folio()] | ||||
| CVE-2025-39726 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: s390/ism: fix concurrency management in ism_cmd() The s390x ISM device data sheet clearly states that only one request-response sequence is allowable per ISM function at any point in time. Unfortunately as of today the s390/ism driver in Linux does not honor that requirement. This patch aims to rectify that. This problem was discovered based on Aliaksei's bug report which states that for certain workloads the ISM functions end up entering error state (with PEC 2 as seen from the logs) after a while and as a consequence connections handled by the respective function break, and for future connection requests the ISM device is not considered -- given it is in a dysfunctional state. During further debugging PEC 3A was observed as well. A kernel message like [ 1211.244319] zpci: 061a:00:00.0: Event 0x2 reports an error for PCI function 0x61a is a reliable indicator of the stated function entering error state with PEC 2. Let me also point out that a kernel message like [ 1211.244325] zpci: 061a:00:00.0: The ism driver bound to the device does not support error recovery is a reliable indicator that the ISM function won't be auto-recovered because the ISM driver currently lacks support for it. On a technical level, without this synchronization, commands (inputs to the FW) may be partially or fully overwritten (corrupted) by another CPU trying to issue commands on the same function. There is hard evidence that this can lead to DMB token values being used as DMB IOVAs, leading to PEC 2 PCI events indicating invalid DMA. But this is only one of the failure modes imaginable. In theory even completely losing one command and executing another one twice and then trying to interpret the outputs as if the command we intended to execute was actually executed and not the other one is also possible. Frankly, I don't feel confident about providing an exhaustive list of possible consequences. | ||||
| CVE-2025-39680 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: i2c: rtl9300: Fix out-of-bounds bug in rtl9300_i2c_smbus_xfer The data->block[0] variable comes from user. Without proper check, the variable may be very large to cause an out-of-bounds bug. Fix this bug by checking the value of data->block[0] first. 1. commit 39244cc75482 ("i2c: ismt: Fix an out-of-bounds bug in ismt_access()") 2. commit 92fbb6d1296f ("i2c: xgene-slimpro: Fix out-of-bounds bug in xgene_slimpro_i2c_xfer()") | ||||
| CVE-2025-39687 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iio: light: as73211: Ensure buffer holes are zeroed Given that the buffer is copied to a kfifo that ultimately user space can read, ensure we zero it. | ||||
| CVE-2025-39693 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid a NULL pointer dereference [WHY] Although unlikely drm_atomic_get_new_connector_state() or drm_atomic_get_old_connector_state() can return NULL. [HOW] Check returns before dereference. (cherry picked from commit 1e5e8d672fec9f2ab352be121be971877bff2af9) | ||||
| CVE-2025-39714 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: usbtv: Lock resolution while streaming When an program is streaming (ffplay) and another program (qv4l2) changes the TV standard from NTSC to PAL, the kernel crashes due to trying to copy to unmapped memory. Changing from NTSC to PAL increases the resolution in the usbtv struct, but the video plane buffer isn't adjusted, so it overflows. [hverkuil: call vb2_is_busy instead of vb2_is_streaming] | ||||
| CVE-2025-39709 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: venus: protect against spurious interrupts during probe Make sure the interrupt handler is initialized before the interrupt is registered. If the IRQ is registered before hfi_create(), it's possible that an interrupt fires before the handler setup is complete, leading to a NULL dereference. This error condition has been observed during system boot on Rb3Gen2. | ||||
| CVE-2025-39710 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: venus: Add a check for packet size after reading from shared memory Add a check to ensure that the packet size does not exceed the number of available words after reading the packet header from shared memory. This ensures that the size provided by the firmware is safe to process and prevent potential out-of-bounds memory access. | ||||
| CVE-2025-39719 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iio: imu: bno055: fix OOB access of hw_xlate array Fix a potential out-of-bounds array access of the hw_xlate array in bno055.c. In bno055_get_regmask(), hw_xlate was iterated over the length of the vals array instead of the length of the hw_xlate array. In the case of bno055_gyr_scale, the vals array is larger than the hw_xlate array, so this could result in an out-of-bounds access. In practice, this shouldn't happen though because a match should always be found which breaks out of the for loop before it iterates beyond the end of the hw_xlate array. By adding a new hw_xlate_len field to the bno055_sysfs_attr, we can be sure we are iterating over the correct length. | ||||
| CVE-2025-39734 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Revert "fs/ntfs3: Replace inode_trylock with inode_lock" This reverts commit 69505fe98f198ee813898cbcaf6770949636430b. Initially, conditional lock acquisition was removed to fix an xfstest bug that was observed during internal testing. The deadlock reported by syzbot is resolved by reintroducing conditional acquisition. The xfstest bug no longer occurs on kernel version 6.16-rc1 during internal testing. I assume that changes in other modules may have contributed to this. | ||||
| CVE-2025-39729 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: crypto: ccp - Fix dereferencing uninitialized error pointer Fix below smatch warnings: drivers/crypto/ccp/sev-dev.c:1312 __sev_platform_init_locked() error: we previously assumed 'error' could be null | ||||
| CVE-2022-48982 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix crash when replugging CSR fake controllers It seems fake CSR 5.0 clones can cause the suspend notifier to be registered twice causing the following kernel panic: [ 71.986122] Call Trace: [ 71.986124] <TASK> [ 71.986125] blocking_notifier_chain_register+0x33/0x60 [ 71.986130] hci_register_dev+0x316/0x3d0 [bluetooth 99b5497ea3d09708fa1366c1dc03288bf3cca8da] [ 71.986154] btusb_probe+0x979/0xd85 [btusb e1e0605a4f4c01984a4b9c8ac58c3666ae287477] [ 71.986159] ? __pm_runtime_set_status+0x1a9/0x300 [ 71.986162] ? ktime_get_mono_fast_ns+0x3e/0x90 [ 71.986167] usb_probe_interface+0xe3/0x2b0 [ 71.986171] really_probe+0xdb/0x380 [ 71.986174] ? pm_runtime_barrier+0x54/0x90 [ 71.986177] __driver_probe_device+0x78/0x170 [ 71.986180] driver_probe_device+0x1f/0x90 [ 71.986183] __device_attach_driver+0x89/0x110 [ 71.986186] ? driver_allows_async_probing+0x70/0x70 [ 71.986189] bus_for_each_drv+0x8c/0xe0 [ 71.986192] __device_attach+0xb2/0x1e0 [ 71.986195] bus_probe_device+0x92/0xb0 [ 71.986198] device_add+0x422/0x9a0 [ 71.986201] ? sysfs_merge_group+0xd4/0x110 [ 71.986205] usb_set_configuration+0x57a/0x820 [ 71.986208] usb_generic_driver_probe+0x4f/0x70 [ 71.986211] usb_probe_device+0x3a/0x110 [ 71.986213] really_probe+0xdb/0x380 [ 71.986216] ? pm_runtime_barrier+0x54/0x90 [ 71.986219] __driver_probe_device+0x78/0x170 [ 71.986221] driver_probe_device+0x1f/0x90 [ 71.986224] __device_attach_driver+0x89/0x110 [ 71.986227] ? driver_allows_async_probing+0x70/0x70 [ 71.986230] bus_for_each_drv+0x8c/0xe0 [ 71.986232] __device_attach+0xb2/0x1e0 [ 71.986235] bus_probe_device+0x92/0xb0 [ 71.986237] device_add+0x422/0x9a0 [ 71.986239] ? _dev_info+0x7d/0x98 [ 71.986242] ? blake2s_update+0x4c/0xc0 [ 71.986246] usb_new_device.cold+0x148/0x36d [ 71.986250] hub_event+0xa8a/0x1910 [ 71.986255] process_one_work+0x1c4/0x380 [ 71.986259] worker_thread+0x51/0x390 [ 71.986262] ? rescuer_thread+0x3b0/0x3b0 [ 71.986264] kthread+0xdb/0x110 [ 71.986266] ? kthread_complete_and_exit+0x20/0x20 [ 71.986268] ret_from_fork+0x1f/0x30 [ 71.986273] </TASK> [ 71.986274] ---[ end trace 0000000000000000 ]--- [ 71.986284] btusb: probe of 2-1.6:1.0 failed with error -17 | ||||
| CVE-2025-38399 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix NULL pointer dereference in core_scsi3_decode_spec_i_port() The function core_scsi3_decode_spec_i_port(), in its error code path, unconditionally calls core_scsi3_lunacl_undepend_item() passing the dest_se_deve pointer, which may be NULL. This can lead to a NULL pointer dereference if dest_se_deve remains unset. SPC-3 PR SPEC_I_PT: Unable to locate dest_tpg Unable to handle kernel paging request at virtual address dfff800000000012 Call trace: core_scsi3_lunacl_undepend_item+0x2c/0xf0 [target_core_mod] (P) core_scsi3_decode_spec_i_port+0x120c/0x1c30 [target_core_mod] core_scsi3_emulate_pro_register+0x6b8/0xcd8 [target_core_mod] target_scsi3_emulate_pr_out+0x56c/0x840 [target_core_mod] Fix this by adding a NULL check before calling core_scsi3_lunacl_undepend_item() | ||||
| CVE-2025-38728 | 1 Linux | 1 Linux Kernel | 2025-09-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: smb3: fix for slab out of bounds on mount to ksmbd With KASAN enabled, it is possible to get a slab out of bounds during mount to ksmbd due to missing check in parse_server_interfaces() (see below): BUG: KASAN: slab-out-of-bounds in parse_server_interfaces+0x14ee/0x1880 [cifs] Read of size 4 at addr ffff8881433dba98 by task mount/9827 CPU: 5 UID: 0 PID: 9827 Comm: mount Tainted: G OE 6.16.0-rc2-kasan #2 PREEMPT(voluntary) Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: Dell Inc. Precision Tower 3620/0MWYPT, BIOS 2.13.1 06/14/2019 Call Trace: <TASK> dump_stack_lvl+0x9f/0xf0 print_report+0xd1/0x670 __virt_addr_valid+0x22c/0x430 ? parse_server_interfaces+0x14ee/0x1880 [cifs] ? kasan_complete_mode_report_info+0x2a/0x1f0 ? parse_server_interfaces+0x14ee/0x1880 [cifs] kasan_report+0xd6/0x110 parse_server_interfaces+0x14ee/0x1880 [cifs] __asan_report_load_n_noabort+0x13/0x20 parse_server_interfaces+0x14ee/0x1880 [cifs] ? __pfx_parse_server_interfaces+0x10/0x10 [cifs] ? trace_hardirqs_on+0x51/0x60 SMB3_request_interfaces+0x1ad/0x3f0 [cifs] ? __pfx_SMB3_request_interfaces+0x10/0x10 [cifs] ? SMB2_tcon+0x23c/0x15d0 [cifs] smb3_qfs_tcon+0x173/0x2b0 [cifs] ? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs] ? cifs_get_tcon+0x105d/0x2120 [cifs] ? do_raw_spin_unlock+0x5d/0x200 ? cifs_get_tcon+0x105d/0x2120 [cifs] ? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs] cifs_mount_get_tcon+0x369/0xb90 [cifs] ? dfs_cache_find+0xe7/0x150 [cifs] dfs_mount_share+0x985/0x2970 [cifs] ? check_path.constprop.0+0x28/0x50 ? save_trace+0x54/0x370 ? __pfx_dfs_mount_share+0x10/0x10 [cifs] ? __lock_acquire+0xb82/0x2ba0 ? __kasan_check_write+0x18/0x20 cifs_mount+0xbc/0x9e0 [cifs] ? __pfx_cifs_mount+0x10/0x10 [cifs] ? do_raw_spin_unlock+0x5d/0x200 ? cifs_setup_cifs_sb+0x29d/0x810 [cifs] cifs_smb3_do_mount+0x263/0x1990 [cifs] | ||||