Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
13441 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-53398 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mlx5: fix possible ptp queue fifo use-after-free Fifo indexes are not checked during pop operations and it leads to potential use-after-free when poping from empty queue. Such case was possible during re-sync action. WARN_ON_ONCE covers future cases. There were out-of-order cqe spotted which lead to drain of the queue and use-after-free because of lack of fifo pointers check. Special check and counter are added to avoid resync operation if SKB could not exist in the fifo because of OOO cqe (skb_id must be between consumer and producer index). | ||||
| CVE-2022-50390 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/ttm: fix undefined behavior in bit shift for TTM_TT_FLAG_PRIV_POPULATED Shifting signed 32-bit value by 31 bits is undefined, so changing significant bit to unsigned. The UBSAN warning calltrace like below: UBSAN: shift-out-of-bounds in ./include/drm/ttm/ttm_tt.h:122:26 left shift of 1 by 31 places cannot be represented in type 'int' Call Trace: <TASK> dump_stack_lvl+0x7d/0xa5 dump_stack+0x15/0x1b ubsan_epilogue+0xe/0x4e __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c ttm_bo_move_memcpy+0x3b4/0x460 [ttm] bo_driver_move+0x32/0x40 [drm_vram_helper] ttm_bo_handle_move_mem+0x118/0x200 [ttm] ttm_bo_validate+0xfa/0x220 [ttm] drm_gem_vram_pin_locked+0x70/0x1b0 [drm_vram_helper] drm_gem_vram_pin+0x48/0xb0 [drm_vram_helper] drm_gem_vram_plane_helper_prepare_fb+0x53/0xe0 [drm_vram_helper] drm_gem_vram_simple_display_pipe_prepare_fb+0x26/0x30 [drm_vram_helper] drm_simple_kms_plane_prepare_fb+0x4d/0xe0 [drm_kms_helper] drm_atomic_helper_prepare_planes+0xda/0x210 [drm_kms_helper] drm_atomic_helper_commit+0xc3/0x1e0 [drm_kms_helper] drm_atomic_commit+0x9c/0x160 [drm] drm_client_modeset_commit_atomic+0x33a/0x380 [drm] drm_client_modeset_commit_locked+0x77/0x220 [drm] drm_client_modeset_commit+0x31/0x60 [drm] __drm_fb_helper_restore_fbdev_mode_unlocked+0xa7/0x170 [drm_kms_helper] drm_fb_helper_set_par+0x51/0x90 [drm_kms_helper] fbcon_init+0x316/0x790 visual_init+0x113/0x1d0 do_bind_con_driver+0x2a3/0x5c0 do_take_over_console+0xa9/0x270 do_fbcon_takeover+0xa1/0x170 do_fb_registered+0x2a8/0x340 fbcon_fb_registered+0x47/0xe0 register_framebuffer+0x294/0x4a0 __drm_fb_helper_initial_config_and_unlock+0x43c/0x880 [drm_kms_helper] drm_fb_helper_initial_config+0x52/0x80 [drm_kms_helper] drm_fbdev_client_hotplug+0x156/0x1b0 [drm_kms_helper] drm_fbdev_generic_setup+0xfc/0x290 [drm_kms_helper] bochs_pci_probe+0x6ca/0x772 [bochs] local_pci_probe+0x4d/0xb0 pci_device_probe+0x119/0x320 really_probe+0x181/0x550 __driver_probe_device+0xc6/0x220 driver_probe_device+0x32/0x100 __driver_attach+0x195/0x200 bus_for_each_dev+0xbb/0x120 driver_attach+0x27/0x30 bus_add_driver+0x22e/0x2f0 driver_register+0xa9/0x190 __pci_register_driver+0x90/0xa0 bochs_pci_driver_init+0x52/0x1000 [bochs] do_one_initcall+0x76/0x430 do_init_module+0x61/0x28a load_module+0x1f82/0x2e50 __do_sys_finit_module+0xf8/0x190 __x64_sys_finit_module+0x23/0x30 do_syscall_64+0x58/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> | ||||
| CVE-2023-53386 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix potential use-after-free when clear keys Similar to commit c5d2b6fa26b5 ("Bluetooth: Fix use-after-free in hci_remove_ltk/hci_remove_irk"). We can not access k after kfree_rcu() call. | ||||
| CVE-2023-53392 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: HID: intel-ish-hid: Fix kernel panic during warm reset During warm reset device->fw_client is set to NULL. If a bus driver is registered after this NULL setting and before new firmware clients are enumerated by ISHTP, kernel panic will result in the function ishtp_cl_bus_match(). This is because of reference to device->fw_client->props.protocol_name. ISH firmware after getting successfully loaded, sends a warm reset notification to remove all clients from the bus and sets device->fw_client to NULL. Until kernel v5.15, all enabled ISHTP kernel module drivers were loaded right after any of the first ISHTP device was registered, regardless of whether it was a matched or an unmatched device. This resulted in all drivers getting registered much before the warm reset notification from ISH. Starting kernel v5.16, this issue got exposed after the change was introduced to load only bus drivers for the respective matching devices. In this scenario, cros_ec_ishtp device and cros_ec_ishtp driver are registered after the warm reset device fw_client NULL setting. cros_ec_ishtp driver_register() triggers the callback to ishtp_cl_bus_match() to match ISHTP driver to the device and causes kernel panic in guid_equal() when dereferencing fw_client NULL pointer to get protocol_name. | ||||
| CVE-2023-53369 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: dcb: choose correct policy to parse DCB_ATTR_BCN The dcbnl_bcn_setcfg uses erroneous policy to parse tb[DCB_ATTR_BCN], which is introduced in commit 859ee3c43812 ("DCB: Add support for DCB BCN"). Please see the comment in below code static int dcbnl_bcn_setcfg(...) { ... ret = nla_parse_nested_deprecated(..., dcbnl_pfc_up_nest, .. ) // !!! dcbnl_pfc_up_nest for attributes // DCB_PFC_UP_ATTR_0 to DCB_PFC_UP_ATTR_ALL in enum dcbnl_pfc_up_attrs ... for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) { // !!! DCB_BCN_ATTR_RP_0 to DCB_BCN_ATTR_RP_7 in enum dcbnl_bcn_attrs ... value_byte = nla_get_u8(data[i]); ... } ... for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) { // !!! DCB_BCN_ATTR_BCNA_0 to DCB_BCN_ATTR_RI in enum dcbnl_bcn_attrs ... value_int = nla_get_u32(data[i]); ... } ... } That is, the nla_parse_nested_deprecated uses dcbnl_pfc_up_nest attributes to parse nlattr defined in dcbnl_pfc_up_attrs. But the following access code fetch each nlattr as dcbnl_bcn_attrs attributes. By looking up the associated nla_policy for dcbnl_bcn_attrs. We can find the beginning part of these two policies are "same". static const struct nla_policy dcbnl_pfc_up_nest[...] = { [DCB_PFC_UP_ATTR_0] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_1] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_2] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_3] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_4] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_5] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_6] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_7] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_ALL] = {.type = NLA_FLAG}, }; static const struct nla_policy dcbnl_bcn_nest[...] = { [DCB_BCN_ATTR_RP_0] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_1] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_2] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_3] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_4] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_5] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_6] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_7] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_ALL] = {.type = NLA_FLAG}, // from here is somewhat different [DCB_BCN_ATTR_BCNA_0] = {.type = NLA_U32}, ... [DCB_BCN_ATTR_ALL] = {.type = NLA_FLAG}, }; Therefore, the current code is buggy and this nla_parse_nested_deprecated could overflow the dcbnl_pfc_up_nest and use the adjacent nla_policy to parse attributes from DCB_BCN_ATTR_BCNA_0. Hence use the correct policy dcbnl_bcn_nest to parse the nested tb[DCB_ATTR_BCN] TLV. | ||||
| CVE-2023-53383 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: irqchip/gicv3: Workaround for NVIDIA erratum T241-FABRIC-4 The T241 platform suffers from the T241-FABRIC-4 erratum which causes unexpected behavior in the GIC when multiple transactions are received simultaneously from different sources. This hardware issue impacts NVIDIA server platforms that use more than two T241 chips interconnected. Each chip has support for 320 {E}SPIs. This issue occurs when multiple packets from different GICs are incorrectly interleaved at the target chip. The erratum text below specifies exactly what can cause multiple transfer packets susceptible to interleaving and GIC state corruption. GIC state corruption can lead to a range of problems, including kernel panics, and unexpected behavior. >From the erratum text: "In some cases, inter-socket AXI4 Stream packets with multiple transfers, may be interleaved by the fabric when presented to ARM Generic Interrupt Controller. GIC expects all transfers of a packet to be delivered without any interleaving. The following GICv3 commands may result in multiple transfer packets over inter-socket AXI4 Stream interface: - Register reads from GICD_I* and GICD_N* - Register writes to 64-bit GICD registers other than GICD_IROUTERn* - ITS command MOVALL Multiple commands in GICv4+ utilize multiple transfer packets, including VMOVP, VMOVI, VMAPP, and 64-bit register accesses." This issue impacts system configurations with more than 2 sockets, that require multi-transfer packets to be sent over inter-socket AXI4 Stream interface between GIC instances on different sockets. GICv4 cannot be supported. GICv3 SW model can only be supported with the workaround. Single and Dual socket configurations are not impacted by this issue and support GICv3 and GICv4." Writing to the chip alias region of the GICD_In{E} registers except GICD_ICENABLERn has an equivalent effect as writing to the global distributor. The SPI interrupt deactivate path is not impacted by the erratum. To fix this problem, implement a workaround that ensures read accesses to the GICD_In{E} registers are directed to the chip that owns the SPI, and disable GICv4.x features. To simplify code changes, the gic_configure_irq() function uses the same alias region for both read and write operations to GICD_ICFGR. | ||||
| CVE-2023-53400 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix Oops by 9.1 surround channel names get_line_out_pfx() may trigger an Oops by overflowing the static array with more than 8 channels. This was reported for MacBookPro 12,1 with Cirrus codec. As a workaround, extend for the 9.1 channels and also fix the potential Oops by unifying the code paths accessing the same array with the proper size check. | ||||
| CVE-2023-53377 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: cifs: prevent use-after-free by freeing the cfile later In smb2_compound_op we have a possible use-after-free which can cause hard to debug problems later on. This was revealed during stress testing with KASAN enabled kernel. Fixing it by moving the cfile free call to a few lines below, after the usage. | ||||
| CVE-2022-50392 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8183: fix refcount leak in mt8183_mt6358_ts3a227_max98357_dev_probe() The node returned by of_parse_phandle() with refcount incremented, of_node_put() needs be called when finish using it. So add it in the error path in mt8183_mt6358_ts3a227_max98357_dev_probe(). | ||||
| CVE-2023-53445 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: qrtr: Fix a refcount bug in qrtr_recvmsg() Syzbot reported a bug as following: refcount_t: addition on 0; use-after-free. ... RIP: 0010:refcount_warn_saturate+0x17c/0x1f0 lib/refcount.c:25 ... Call Trace: <TASK> __refcount_add include/linux/refcount.h:199 [inline] __refcount_inc include/linux/refcount.h:250 [inline] refcount_inc include/linux/refcount.h:267 [inline] kref_get include/linux/kref.h:45 [inline] qrtr_node_acquire net/qrtr/af_qrtr.c:202 [inline] qrtr_node_lookup net/qrtr/af_qrtr.c:398 [inline] qrtr_send_resume_tx net/qrtr/af_qrtr.c:1003 [inline] qrtr_recvmsg+0x85f/0x990 net/qrtr/af_qrtr.c:1070 sock_recvmsg_nosec net/socket.c:1017 [inline] sock_recvmsg+0xe2/0x160 net/socket.c:1038 qrtr_ns_worker+0x170/0x1700 net/qrtr/ns.c:688 process_one_work+0x991/0x15c0 kernel/workqueue.c:2390 worker_thread+0x669/0x1090 kernel/workqueue.c:2537 It occurs in the concurrent scenario of qrtr_recvmsg() and qrtr_endpoint_unregister() as following: cpu0 cpu1 qrtr_recvmsg qrtr_endpoint_unregister qrtr_send_resume_tx qrtr_node_release qrtr_node_lookup mutex_lock(&qrtr_node_lock) spin_lock_irqsave(&qrtr_nodes_lock, ) refcount_dec_and_test(&node->ref) [node->ref == 0] radix_tree_lookup [node != NULL] __qrtr_node_release qrtr_node_acquire spin_lock_irqsave(&qrtr_nodes_lock, ) kref_get(&node->ref) [WARNING] ... mutex_unlock(&qrtr_node_lock) Use qrtr_node_lock to protect qrtr_node_lookup() implementation, this is actually improving the protection of node reference. | ||||
| CVE-2022-50406 | 1 Linux | 1 Linux Kernel | 2025-09-19 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: iomap: iomap: fix memory corruption when recording errors during writeback Every now and then I see this crash on arm64: Unable to handle kernel NULL pointer dereference at virtual address 00000000000000f8 Buffer I/O error on dev dm-0, logical block 8733687, async page read Mem abort info: ESR = 0x0000000096000006 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x06: level 2 translation fault Data abort info: ISV = 0, ISS = 0x00000006 CM = 0, WnR = 0 user pgtable: 64k pages, 42-bit VAs, pgdp=0000000139750000 [00000000000000f8] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000, pmd=0000000000000000 Internal error: Oops: 96000006 [#1] PREEMPT SMP Buffer I/O error on dev dm-0, logical block 8733688, async page read Dumping ftrace buffer: Buffer I/O error on dev dm-0, logical block 8733689, async page read (ftrace buffer empty) XFS (dm-0): log I/O error -5 Modules linked in: dm_thin_pool dm_persistent_data XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ec/0x590 [xfs] (fs/xfs/xfs_trans_buf.c:296). dm_bio_prison XFS (dm-0): Please unmount the filesystem and rectify the problem(s) XFS (dm-0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -5, agno 0 dm_bufio dm_log_writes xfs nft_chain_nat xt_REDIRECT nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_REJECT potentially unexpected fatal signal 6. nf_reject_ipv6 potentially unexpected fatal signal 6. ipt_REJECT nf_reject_ipv4 CPU: 1 PID: 122166 Comm: fsstress Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7 rpcsec_gss_krb5 auth_rpcgss xt_tcpudp ip_set_hash_ip ip_set_hash_net xt_set nft_compat ip_set_hash_mac ip_set nf_tables Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021 pstate: 60001000 (nZCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--) ip_tables pc : 000003fd6d7df200 x_tables lr : 000003fd6d7df1ec overlay nfsv4 CPU: 0 PID: 54031 Comm: u4:3 Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7405 Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021 Workqueue: writeback wb_workfn sp : 000003ffd9522fd0 (flush-253:0) pstate: 60401005 (nZCv daif +PAN -UAO -TCO -DIT +SSBS BTYPE=--) pc : errseq_set+0x1c/0x100 x29: 000003ffd9522fd0 x28: 0000000000000023 x27: 000002acefeb6780 x26: 0000000000000005 x25: 0000000000000001 x24: 0000000000000000 x23: 00000000ffffffff x22: 0000000000000005 lr : __filemap_set_wb_err+0x24/0xe0 x21: 0000000000000006 sp : fffffe000f80f760 x29: fffffe000f80f760 x28: 0000000000000003 x27: fffffe000f80f9f8 x26: 0000000002523000 x25: 00000000fffffffb x24: fffffe000f80f868 x23: fffffe000f80fbb0 x22: fffffc0180c26a78 x21: 0000000002530000 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000001 x13: 0000000000470af3 x12: fffffc0058f70000 x11: 0000000000000040 x10: 0000000000001b20 x9 : fffffe000836b288 x8 : fffffc00eb9fd480 x7 : 0000000000f83659 x6 : 0000000000000000 x5 : 0000000000000869 x4 : 0000000000000005 x3 : 00000000000000f8 x20: 000003fd6d740020 x19: 000000000001dd36 x18: 0000000000000001 x17: 000003fd6d78704c x16: 0000000000000001 x15: 000002acfac87668 x2 : 0000000000000ffa x1 : 00000000fffffffb x0 : 00000000000000f8 Call trace: errseq_set+0x1c/0x100 __filemap_set_wb_err+0x24/0xe0 iomap_do_writepage+0x5e4/0xd5c write_cache_pages+0x208/0x674 iomap_writepages+0x34/0x60 xfs_vm_writepages+0x8c/0xcc [xfs 7a861f39c43631f15d3a5884246ba5035d4ca78b] x14: 0000000000000000 x13: 2064656e72757465 x12: 0000000000002180 x11: 000003fd6d8a82d0 x10: 0000000000000000 x9 : 000003fd6d8ae288 x8 : 0000000000000083 x7 : 00000000ffffffff x6 : 00000000ffffffee x5 : 00000000fbad2887 x4 : 000003fd6d9abb58 x3 : 000003fd6d740020 x2 : 0000000000000006 x1 : 000000000001dd36 x0 : 0000000000000000 CPU: ---truncated--- | ||||
| CVE-2023-53424 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: fix of_iomap memory leak Smatch reports: drivers/clk/mediatek/clk-mtk.c:583 mtk_clk_simple_probe() warn: 'base' from of_iomap() not released on lines: 496. This problem was also found in linux-next. In mtk_clk_simple_probe(), base is not released when handling errors if clk_data is not existed, which may cause a leak. So free_base should be added here to release base. | ||||
| CVE-2023-53437 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Handle cameras with invalid descriptors If the source entity does not contain any pads, do not create a link. | ||||
| CVE-2022-50419 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sysfs: Fix attempting to call device_add multiple times device_add shall not be called multiple times as stated in its documentation: 'Do not call this routine or device_register() more than once for any device structure' Syzkaller reports a bug as follows [1]: ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:33! invalid opcode: 0000 [#1] PREEMPT SMP KASAN [...] Call Trace: <TASK> __list_add include/linux/list.h:69 [inline] list_add_tail include/linux/list.h:102 [inline] kobj_kset_join lib/kobject.c:164 [inline] kobject_add_internal+0x18f/0x8f0 lib/kobject.c:214 kobject_add_varg lib/kobject.c:358 [inline] kobject_add+0x150/0x1c0 lib/kobject.c:410 device_add+0x368/0x1e90 drivers/base/core.c:3452 hci_conn_add_sysfs+0x9b/0x1b0 net/bluetooth/hci_sysfs.c:53 hci_le_cis_estabilished_evt+0x57c/0xae0 net/bluetooth/hci_event.c:6799 hci_le_meta_evt+0x2b8/0x510 net/bluetooth/hci_event.c:7110 hci_event_func net/bluetooth/hci_event.c:7440 [inline] hci_event_packet+0x63d/0xfd0 net/bluetooth/hci_event.c:7495 hci_rx_work+0xae7/0x1230 net/bluetooth/hci_core.c:4007 process_one_work+0x991/0x1610 kernel/workqueue.c:2289 worker_thread+0x665/0x1080 kernel/workqueue.c:2436 kthread+0x2e4/0x3a0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 </TASK> | ||||
| CVE-2023-53440 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix sysfs interface lifetime The current nilfs2 sysfs support has issues with the timing of creation and deletion of sysfs entries, potentially leading to null pointer dereferences, use-after-free, and lockdep warnings. Some of the sysfs attributes for nilfs2 per-filesystem instance refer to metadata file "cpfile", "sufile", or "dat", but nilfs_sysfs_create_device_group that creates those attributes is executed before the inodes for these metadata files are loaded, and nilfs_sysfs_delete_device_group which deletes these sysfs entries is called after releasing their metadata file inodes. Therefore, access to some of these sysfs attributes may occur outside of the lifetime of these metadata files, resulting in inode NULL pointer dereferences or use-after-free. In addition, the call to nilfs_sysfs_create_device_group() is made during the locking period of the semaphore "ns_sem" of nilfs object, so the shrinker call caused by the memory allocation for the sysfs entries, may derive lock dependencies "ns_sem" -> (shrinker) -> "locks acquired in nilfs_evict_inode()". Since nilfs2 may acquire "ns_sem" deep in the call stack holding other locks via its error handler __nilfs_error(), this causes lockdep to report circular locking. This is a false positive and no circular locking actually occurs as no inodes exist yet when nilfs_sysfs_create_device_group() is called. Fortunately, the lockdep warnings can be resolved by simply moving the call to nilfs_sysfs_create_device_group() out of "ns_sem". This fixes these sysfs issues by revising where the device's sysfs interface is created/deleted and keeping its lifetime within the lifetime of the metadata files above. | ||||
| CVE-2022-50416 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: irqchip/wpcm450: Fix memory leak in wpcm450_aic_of_init() If of_iomap() failed, 'aic' should be freed before return. Otherwise there is a memory leak. | ||||
| CVE-2023-53432 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: firewire: net: fix use after free in fwnet_finish_incoming_packet() The netif_rx() function frees the skb so we can't dereference it to save the skb->len. | ||||
| CVE-2022-50415 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: parisc: led: Fix potential null-ptr-deref in start_task() start_task() calls create_singlethread_workqueue() and not checked the ret value, which may return NULL. And a null-ptr-deref may happen: start_task() create_singlethread_workqueue() # failed, led_wq is NULL queue_delayed_work() queue_delayed_work_on() __queue_delayed_work() # warning here, but continue __queue_work() # access wq->flags, null-ptr-deref Check the ret value and return -ENOMEM if it is NULL. | ||||
| CVE-2022-50405 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/tunnel: wait until all sk_user_data reader finish before releasing the sock There is a race condition in vxlan that when deleting a vxlan device during receiving packets, there is a possibility that the sock is released after getting vxlan_sock vs from sk_user_data. Then in later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got NULL pointer dereference. e.g. #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757 #1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d #2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48 #3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b #4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb #5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542 #6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62 [exception RIP: vxlan_ecn_decapsulate+0x3b] RIP: ffffffffc1014e7b RSP: ffffa25ec6978cb0 RFLAGS: 00010246 RAX: 0000000000000008 RBX: ffff8aa000888000 RCX: 0000000000000000 RDX: 000000000000000e RSI: ffff8a9fc7ab803e RDI: ffff8a9fd1168700 RBP: ffff8a9fc7ab803e R8: 0000000000700000 R9: 00000000000010ae R10: ffff8a9fcb748980 R11: 0000000000000000 R12: ffff8a9fd1168700 R13: ffff8aa000888000 R14: 00000000002a0000 R15: 00000000000010ae ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan] #8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507 #9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45 #10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807 #11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951 #12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde #13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b #14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139 #15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a #16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3 #17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca #18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3 Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh Fix this by waiting for all sk_user_data reader to finish before releasing the sock. | ||||
| CVE-2023-53423 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: objtool: Fix memory leak in create_static_call_sections() strdup() allocates memory for key_name. We need to release the memory in the following error paths. Add free() to avoid memory leak. | ||||