Filtered by vendor Linux
Subscriptions
Total
13522 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-50034 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: usb: cdns3 fix use-after-free at workaround 2 BUG: KFENCE: use-after-free read in __list_del_entry_valid+0x10/0xac cdns3_wa2_remove_old_request() { ... kfree(priv_req->request.buf); cdns3_gadget_ep_free_request(&priv_ep->endpoint, &priv_req->request); list_del_init(&priv_req->list); ^^^ use after free ... } cdns3_gadget_ep_free_request() free the space pointed by priv_req, but priv_req is used in the following list_del_init(). This patch move list_del_init() before cdns3_gadget_ep_free_request(). | ||||
| CVE-2022-50117 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: vfio: Split migration ops from main device ops vfio core checks whether the driver sets some migration op (e.g. set_state/get_state) and accordingly calls its op. However, currently mlx5 driver sets the above ops without regards to its migration caps. This might lead to unexpected usage/Oops if user space may call to the above ops even if the driver doesn't support migration. As for example, the migration state_mutex is not initialized in that case. The cleanest way to manage that seems to split the migration ops from the main device ops, this will let the driver setting them separately from the main ops when it's applicable. As part of that, validate ops construction on registration and include a check for VFIO_MIGRATION_STOP_COPY since the uAPI claims it must be set in migration_flags. HISI driver was changed as well to match this scheme. This scheme may enable down the road to come with some extra group of ops (e.g. DMA log) that can be set without regards to the other options based on driver caps. | ||||
| CVE-2022-49999 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix space cache corruption and potential double allocations When testing space_cache v2 on a large set of machines, we encountered a few symptoms: 1. "unable to add free space :-17" (EEXIST) errors. 2. Missing free space info items, sometimes caught with a "missing free space info for X" error. 3. Double-accounted space: ranges that were allocated in the extent tree and also marked as free in the free space tree, ranges that were marked as allocated twice in the extent tree, or ranges that were marked as free twice in the free space tree. If the latter made it onto disk, the next reboot would hit the BUG_ON() in add_new_free_space(). 4. On some hosts with no on-disk corruption or error messages, the in-memory space cache (dumped with drgn) disagreed with the free space tree. All of these symptoms have the same underlying cause: a race between caching the free space for a block group and returning free space to the in-memory space cache for pinned extents causes us to double-add a free range to the space cache. This race exists when free space is cached from the free space tree (space_cache=v2) or the extent tree (nospace_cache, or space_cache=v1 if the cache needs to be regenerated). struct btrfs_block_group::last_byte_to_unpin and struct btrfs_block_group::progress are supposed to protect against this race, but commit d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when waiting for a transaction commit") subtly broke this by allowing multiple transactions to be unpinning extents at the same time. Specifically, the race is as follows: 1. An extent is deleted from an uncached block group in transaction A. 2. btrfs_commit_transaction() is called for transaction A. 3. btrfs_run_delayed_refs() -> __btrfs_free_extent() runs the delayed ref for the deleted extent. 4. __btrfs_free_extent() -> do_free_extent_accounting() -> add_to_free_space_tree() adds the deleted extent back to the free space tree. 5. do_free_extent_accounting() -> btrfs_update_block_group() -> btrfs_cache_block_group() queues up the block group to get cached. block_group->progress is set to block_group->start. 6. btrfs_commit_transaction() for transaction A calls switch_commit_roots(). It sets block_group->last_byte_to_unpin to block_group->progress, which is block_group->start because the block group hasn't been cached yet. 7. The caching thread gets to our block group. Since the commit roots were already switched, load_free_space_tree() sees the deleted extent as free and adds it to the space cache. It finishes caching and sets block_group->progress to U64_MAX. 8. btrfs_commit_transaction() advances transaction A to TRANS_STATE_SUPER_COMMITTED. 9. fsync calls btrfs_commit_transaction() for transaction B. Since transaction A is already in TRANS_STATE_SUPER_COMMITTED and the commit is for fsync, it advances. 10. btrfs_commit_transaction() for transaction B calls switch_commit_roots(). This time, the block group has already been cached, so it sets block_group->last_byte_to_unpin to U64_MAX. 11. btrfs_commit_transaction() for transaction A calls btrfs_finish_extent_commit(), which calls unpin_extent_range() for the deleted extent. It sees last_byte_to_unpin set to U64_MAX (by transaction B!), so it adds the deleted extent to the space cache again! This explains all of our symptoms above: * If the sequence of events is exactly as described above, when the free space is re-added in step 11, it will fail with EEXIST. * If another thread reallocates the deleted extent in between steps 7 and 11, then step 11 will silently re-add that space to the space cache as free even though it is actually allocated. Then, if that space is allocated *again*, the free space tree will be corrupted (namely, the wrong item will be deleted). * If we don't catch this free space tree corr ---truncated--- | ||||
| CVE-2022-50052 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Fix potential buffer overflow by snprintf() snprintf() returns the would-be-filled size when the string overflows the given buffer size, hence using this value may result in a buffer overflow (although it's unrealistic). This patch replaces it with a safer version, scnprintf() for papering over such a potential issue. | ||||
| CVE-2022-49952 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: fix memory corruption on probe Add the missing sanity check on the probed-session count to avoid corrupting memory beyond the fixed-size slab-allocated session array when there are more than FASTRPC_MAX_SESSIONS sessions defined in the devicetree. | ||||
| CVE-2022-50229 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: bcd2000: Fix a UAF bug on the error path of probing When the driver fails in snd_card_register() at probe time, it will free the 'bcd2k->midi_out_urb' before killing it, which may cause a UAF bug. The following log can reveal it: [ 50.727020] BUG: KASAN: use-after-free in bcd2000_input_complete+0x1f1/0x2e0 [snd_bcd2000] [ 50.727623] Read of size 8 at addr ffff88810fab0e88 by task swapper/4/0 [ 50.729530] Call Trace: [ 50.732899] bcd2000_input_complete+0x1f1/0x2e0 [snd_bcd2000] Fix this by adding usb_kill_urb() before usb_free_urb(). | ||||
| CVE-2022-50174 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 4.1 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: hinic: avoid kernel hung in hinic_get_stats64() When using hinic device as a bond slave device, and reading device stats of master bond device, the kernel may hung. The kernel panic calltrace as follows: Kernel panic - not syncing: softlockup: hung tasks Call trace: native_queued_spin_lock_slowpath+0x1ec/0x31c dev_get_stats+0x60/0xcc dev_seq_printf_stats+0x40/0x120 dev_seq_show+0x1c/0x40 seq_read_iter+0x3c8/0x4dc seq_read+0xe0/0x130 proc_reg_read+0xa8/0xe0 vfs_read+0xb0/0x1d4 ksys_read+0x70/0xfc __arm64_sys_read+0x20/0x30 el0_svc_common+0x88/0x234 do_el0_svc+0x2c/0x90 el0_svc+0x1c/0x30 el0_sync_handler+0xa8/0xb0 el0_sync+0x148/0x180 And the calltrace of task that actually caused kernel hungs as follows: __switch_to+124 __schedule+548 schedule+72 schedule_timeout+348 __down_common+188 __down+24 down+104 hinic_get_stats64+44 [hinic] dev_get_stats+92 bond_get_stats+172 [bonding] dev_get_stats+92 dev_seq_printf_stats+60 dev_seq_show+24 seq_read_iter+964 seq_read+220 proc_reg_read+164 vfs_read+172 ksys_read+108 __arm64_sys_read+28 el0_svc_common+132 do_el0_svc+40 el0_svc+24 el0_sync_handler+164 el0_sync+324 When getting device stats from bond, kernel will call bond_get_stats(). It first holds the spinlock bond->stats_lock, and then call hinic_get_stats64() to collect hinic device's stats. However, hinic_get_stats64() calls `down(&nic_dev->mgmt_lock)` to protect its critical section, which may schedule current task out. And if system is under high pressure, the task cannot be woken up immediately, which eventually triggers kernel hung panic. Since previous patch has replaced hinic_dev.tx_stats/rx_stats with local variable in hinic_get_stats64(), there is nothing need to be protected by lock, so just removing down()/up() is ok. | ||||
| CVE-2022-50158 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mtd: partitions: Fix refcount leak in parse_redboot_of of_get_child_by_name() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak. | ||||
| CVE-2022-50193 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: erofs: wake up all waiters after z_erofs_lzma_head ready When the user mounts the erofs second times, the decompression thread may hung. The problem happens due to a sequence of steps like the following: 1) Task A called z_erofs_load_lzma_config which obtain all of the node from the z_erofs_lzma_head. 2) At this time, task B called the z_erofs_lzma_decompress and wanted to get a node. But the z_erofs_lzma_head was empty, the Task B had to sleep. 3) Task A release nodes and push nodes into the z_erofs_lzma_head. But task B was still sleeping. One example report when the hung happens: task:kworker/u3:1 state:D stack:14384 pid: 86 ppid: 2 flags:0x00004000 Workqueue: erofs_unzipd z_erofs_decompressqueue_work Call Trace: <TASK> __schedule+0x281/0x760 schedule+0x49/0xb0 z_erofs_lzma_decompress+0x4bc/0x580 ? cpu_core_flags+0x10/0x10 z_erofs_decompress_pcluster+0x49b/0xba0 ? __update_load_avg_se+0x2b0/0x330 ? __update_load_avg_se+0x2b0/0x330 ? update_load_avg+0x5f/0x690 ? update_load_avg+0x5f/0x690 ? set_next_entity+0xbd/0x110 ? _raw_spin_unlock+0xd/0x20 z_erofs_decompress_queue.isra.0+0x2e/0x50 z_erofs_decompressqueue_work+0x30/0x60 process_one_work+0x1d3/0x3a0 worker_thread+0x45/0x3a0 ? process_one_work+0x3a0/0x3a0 kthread+0xe2/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30 </TASK> | ||||
| CVE-2022-50086 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: block: don't allow the same type rq_qos add more than once In our test of iocost, we encountered some list add/del corruptions of inner_walk list in ioc_timer_fn. The reason can be described as follows: cpu 0 cpu 1 ioc_qos_write ioc_qos_write ioc = q_to_ioc(queue); if (!ioc) { ioc = kzalloc(); ioc = q_to_ioc(queue); if (!ioc) { ioc = kzalloc(); ... rq_qos_add(q, rqos); } ... rq_qos_add(q, rqos); ... } When the io.cost.qos file is written by two cpus concurrently, rq_qos may be added to one disk twice. In that case, there will be two iocs enabled and running on one disk. They own different iocgs on their active list. In the ioc_timer_fn function, because of the iocgs from two iocs have the same root iocg, the root iocg's walk_list may be overwritten by each other and this leads to list add/del corruptions in building or destroying the inner_walk list. And so far, the blk-rq-qos framework works in case that one instance for one type rq_qos per queue by default. This patch make this explicit and also fix the crash above. | ||||
| CVE-2022-50127 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix error unwind in rxe_create_qp() In the function rxe_create_qp(), rxe_qp_from_init() is called to initialize qp, internally things like the spin locks are not setup until rxe_qp_init_req(). If an error occures before this point then the unwind will call rxe_cleanup() and eventually to rxe_qp_do_cleanup()/rxe_cleanup_task() which will oops when trying to access the uninitialized spinlock. Move the spinlock initializations earlier before any failures. | ||||
| CVE-2022-50107 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cifs: Fix memory leak when using fscache If we hit the 'index == next_cached' case, we leak a refcount on the struct page. Fix this by using readahead_folio() which takes care of the refcount for you. | ||||
| CVE-2022-49983 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: udmabuf: Set the DMA mask for the udmabuf device (v2) If the DMA mask is not set explicitly, the following warning occurs when the userspace tries to access the dma-buf via the CPU as reported by syzbot here: WARNING: CPU: 1 PID: 3595 at kernel/dma/mapping.c:188 __dma_map_sg_attrs+0x181/0x1f0 kernel/dma/mapping.c:188 Modules linked in: CPU: 0 PID: 3595 Comm: syz-executor249 Not tainted 5.17.0-rc2-syzkaller-00316-g0457e5153e0e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__dma_map_sg_attrs+0x181/0x1f0 kernel/dma/mapping.c:188 Code: 00 00 00 00 00 fc ff df 48 c1 e8 03 80 3c 10 00 75 71 4c 8b 3d c0 83 b5 0d e9 db fe ff ff e8 b6 0f 13 00 0f 0b e8 af 0f 13 00 <0f> 0b 45 31 e4 e9 54 ff ff ff e8 a0 0f 13 00 49 8d 7f 50 48 b8 00 RSP: 0018:ffffc90002a07d68 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff88807e25e2c0 RSI: ffffffff81649e91 RDI: ffff88801b848408 RBP: ffff88801b848000 R08: 0000000000000002 R09: ffff88801d86c74f R10: ffffffff81649d72 R11: 0000000000000001 R12: 0000000000000002 R13: ffff88801d86c680 R14: 0000000000000001 R15: 0000000000000000 FS: 0000555556e30300(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000200000cc CR3: 000000001d74a000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> dma_map_sgtable+0x70/0xf0 kernel/dma/mapping.c:264 get_sg_table.isra.0+0xe0/0x160 drivers/dma-buf/udmabuf.c:72 begin_cpu_udmabuf+0x130/0x1d0 drivers/dma-buf/udmabuf.c:126 dma_buf_begin_cpu_access+0xfd/0x1d0 drivers/dma-buf/dma-buf.c:1164 dma_buf_ioctl+0x259/0x2b0 drivers/dma-buf/dma-buf.c:363 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f62fcf530f9 Code: 28 c3 e8 2a 14 00 00 66 2e 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffe3edab9b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f62fcf530f9 RDX: 0000000020000200 RSI: 0000000040086200 RDI: 0000000000000006 RBP: 00007f62fcf170e0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f62fcf17170 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> v2: Dont't forget to deregister if DMA mask setup fails. | ||||
| CVE-2022-50195 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ARM: dts: qcom: replace gcc PXO with pxo_board fixed clock Replace gcc PXO phandle to pxo_board fixed clock declared in the dts. gcc driver doesn't provide PXO_SRC as it's a fixed-clock. This cause a kernel panic if any driver actually try to use it. | ||||
| CVE-2022-50017 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mips: cavium-octeon: Fix missing of_node_put() in octeon2_usb_clocks_start We should call of_node_put() for the reference 'uctl_node' returned by of_get_parent() which will increase the refcount. Otherwise, there will be a refcount leak bug. | ||||
| CVE-2022-50213 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: do not allow SET_ID to refer to another table When doing lookups for sets on the same batch by using its ID, a set from a different table can be used. Then, when the table is removed, a reference to the set may be kept after the set is freed, leading to a potential use-after-free. When looking for sets by ID, use the table that was used for the lookup by name, and only return sets belonging to that same table. This fixes CVE-2022-2586, also reported as ZDI-CAN-17470. | ||||
| CVE-2022-49978 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fbdev: fb_pm2fb: Avoid potential divide by zero error In `do_fb_ioctl()` of fbmem.c, if cmd is FBIOPUT_VSCREENINFO, var will be copied from user, then go through `fb_set_var()` and `info->fbops->fb_check_var()` which could may be `pm2fb_check_var()`. Along the path, `var->pixclock` won't be modified. This function checks whether reciprocal of `var->pixclock` is too high. If `var->pixclock` is zero, there will be a divide by zero error. So, it is necessary to check whether denominator is zero to avoid crash. As this bug is found by Syzkaller, logs are listed below. divide error in pm2fb_check_var Call Trace: <TASK> fb_set_var+0x367/0xeb0 drivers/video/fbdev/core/fbmem.c:1015 do_fb_ioctl+0x234/0x670 drivers/video/fbdev/core/fbmem.c:1110 fb_ioctl+0xdd/0x130 drivers/video/fbdev/core/fbmem.c:1189 | ||||
| CVE-2022-50163 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ax25: fix incorrect dev_tracker usage While investigating a separate rose issue [1], and enabling CONFIG_NET_DEV_REFCNT_TRACKER=y, Bernard reported an orthogonal ax25 issue [2] An ax25_dev can be used by one (or many) struct ax25_cb. We thus need different dev_tracker, one per struct ax25_cb. After this patch is applied, we are able to focus on rose. [1] https://lore.kernel.org/netdev/fb7544a1-f42e-9254-18cc-c9b071f4ca70@free.fr/ [2] [ 205.798723] reference already released. [ 205.798732] allocated in: [ 205.798734] ax25_bind+0x1a2/0x230 [ax25] [ 205.798747] __sys_bind+0xea/0x110 [ 205.798753] __x64_sys_bind+0x18/0x20 [ 205.798758] do_syscall_64+0x5c/0x80 [ 205.798763] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 205.798768] freed in: [ 205.798770] ax25_release+0x115/0x370 [ax25] [ 205.798778] __sock_release+0x42/0xb0 [ 205.798782] sock_close+0x15/0x20 [ 205.798785] __fput+0x9f/0x260 [ 205.798789] ____fput+0xe/0x10 [ 205.798792] task_work_run+0x64/0xa0 [ 205.798798] exit_to_user_mode_prepare+0x18b/0x190 [ 205.798804] syscall_exit_to_user_mode+0x26/0x40 [ 205.798808] do_syscall_64+0x69/0x80 [ 205.798812] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 205.798827] ------------[ cut here ]------------ [ 205.798829] WARNING: CPU: 2 PID: 2605 at lib/ref_tracker.c:136 ref_tracker_free.cold+0x60/0x81 [ 205.798837] Modules linked in: rose netrom mkiss ax25 rfcomm cmac algif_hash algif_skcipher af_alg bnep snd_hda_codec_hdmi nls_iso8859_1 i915 rtw88_8821ce rtw88_8821c x86_pkg_temp_thermal rtw88_pci intel_powerclamp rtw88_core snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio coretemp snd_hda_intel kvm_intel snd_intel_dspcfg mac80211 snd_hda_codec kvm i2c_algo_bit drm_buddy drm_dp_helper btusb drm_kms_helper snd_hwdep btrtl snd_hda_core btbcm joydev crct10dif_pclmul btintel crc32_pclmul ghash_clmulni_intel mei_hdcp btmtk intel_rapl_msr aesni_intel bluetooth input_leds snd_pcm crypto_simd syscopyarea processor_thermal_device_pci_legacy sysfillrect cryptd intel_soc_dts_iosf snd_seq sysimgblt ecdh_generic fb_sys_fops rapl libarc4 processor_thermal_device intel_cstate processor_thermal_rfim cec snd_timer ecc snd_seq_device cfg80211 processor_thermal_mbox mei_me processor_thermal_rapl mei rc_core at24 snd intel_pch_thermal intel_rapl_common ttm soundcore int340x_thermal_zone video [ 205.798948] mac_hid acpi_pad sch_fq_codel ipmi_devintf ipmi_msghandler drm msr parport_pc ppdev lp parport ramoops pstore_blk reed_solomon pstore_zone efi_pstore ip_tables x_tables autofs4 hid_generic usbhid hid i2c_i801 i2c_smbus r8169 xhci_pci ahci libahci realtek lpc_ich xhci_pci_renesas [last unloaded: ax25] [ 205.798992] CPU: 2 PID: 2605 Comm: ax25ipd Not tainted 5.18.11-F6BVP #3 [ 205.798996] Hardware name: To be filled by O.E.M. To be filled by O.E.M./CK3, BIOS 5.011 09/16/2020 [ 205.798999] RIP: 0010:ref_tracker_free.cold+0x60/0x81 [ 205.799005] Code: e8 d2 01 9b ff 83 7b 18 00 74 14 48 c7 c7 2f d7 ff 98 e8 10 6e fc ff 8b 7b 18 e8 b8 01 9b ff 4c 89 ee 4c 89 e7 e8 5d fd 07 00 <0f> 0b b8 ea ff ff ff e9 30 05 9b ff 41 0f b6 f7 48 c7 c7 a0 fa 4e [ 205.799008] RSP: 0018:ffffaf5281073958 EFLAGS: 00010286 [ 205.799011] RAX: 0000000080000000 RBX: ffff9a0bd687ebe0 RCX: 0000000000000000 [ 205.799014] RDX: 0000000000000001 RSI: 0000000000000282 RDI: 00000000ffffffff [ 205.799016] RBP: ffffaf5281073a10 R08: 0000000000000003 R09: fffffffffffd5618 [ 205.799019] R10: 0000000000ffff10 R11: 000000000000000f R12: ffff9a0bc53384d0 [ 205.799022] R13: 0000000000000282 R14: 00000000ae000001 R15: 0000000000000001 [ 205.799024] FS: 0000000000000000(0000) GS:ffff9a0d0f300000(0000) knlGS:0000000000000000 [ 205.799028] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 205.799031] CR2: 00007ff6b8311554 CR3: 000000001ac10004 CR4: 00000000001706e0 [ 205.799033] Call Trace: [ 205.799035] <TASK> [ 205.799038] ? ax25_dev_device_down+0xd9/ ---truncated--- | ||||
| CVE-2022-50160 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mtd: maps: Fix refcount leak in ap_flash_init of_find_matching_node() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak. | ||||
| CVE-2022-50092 | 1 Linux | 1 Linux Kernel | 2025-06-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: dm thin: fix use-after-free crash in dm_sm_register_threshold_callback Fault inject on pool metadata device reports: BUG: KASAN: use-after-free in dm_pool_register_metadata_threshold+0x40/0x80 Read of size 8 at addr ffff8881b9d50068 by task dmsetup/950 CPU: 7 PID: 950 Comm: dmsetup Tainted: G W 5.19.0-rc6 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_address_description.constprop.0.cold+0xeb/0x3f4 kasan_report.cold+0xe6/0x147 dm_pool_register_metadata_threshold+0x40/0x80 pool_ctr+0xa0a/0x1150 dm_table_add_target+0x2c8/0x640 table_load+0x1fd/0x430 ctl_ioctl+0x2c4/0x5a0 dm_ctl_ioctl+0xa/0x10 __x64_sys_ioctl+0xb3/0xd0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 This can be easily reproduced using: echo offline > /sys/block/sda/device/state dd if=/dev/zero of=/dev/mapper/thin bs=4k count=10 dmsetup load pool --table "0 20971520 thin-pool /dev/sda /dev/sdb 128 0 0" If a metadata commit fails, the transaction will be aborted and the metadata space maps will be destroyed. If a DM table reload then happens for this failed thin-pool, a use-after-free will occur in dm_sm_register_threshold_callback (called from dm_pool_register_metadata_threshold). Fix this by in dm_pool_register_metadata_threshold() by returning the -EINVAL error if the thin-pool is in fail mode. Also fail pool_ctr() with a new error message: "Error registering metadata threshold". | ||||